
F O U N D A T I O N

®

OPC XML-DA Specification

Version 1.01

Status: Released

December 18, 2004

1

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Specification Type Industry Standard Specification

Title: OPC XML-DA Specification Date: December 18, 2004

Version: 1.01 Soft MS-Word
 Source: OPC XMLDA 1.01

Specification.doc

Author: OPC Foundation Status: Released

Synopsis:
This document is targeted at developers and is the specification of the services
to be exposed by XML-DA servers and used by XML-DA clients.. The
specification is a result of an analysis and design process to develop a
standard interface to facilitate the development of servers and clients by
multiple vendors that shall inter-operate seamlessly together.

Trademarks:
Most computer and software brand names have trademarks or registered
trademarks. The individual trademarks have not been listed here.

Required Runtime Environment:
Minimally, any operating system that is capable of parsing XML messages
and can support 64-bit integers and 64-bit floating point types. Practically, the
runtime environment should be a 32-bit operating system with a Web server,
an XML parser and a SOAP API of some sort.

2

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

NON-EXCLUSIVE LICENSE AGREEMENT

The OPC Foundation, a non-profit corporation (the “OPC Foundation”), has established a set of
specifications intended to foster greater interoperability between automation/control applications, field
systems/devices, and business/office applications in the process control industry.

The OPC specifications define standard interfaces, objects, methods, and properties for servers of real-time
information like distributed process systems, programmable logic controllers, smart field devices and
analyzers. The OPC Foundation distributes specifications, prototype software examples and related
documentation (collectively, the "OPC Materials") to its members in order to facilitate the development of
OPC compliant applications.

The OPC Foundation will grant to you (the "User"), whether an individual or legal entity, a license to use,
and provide User with a copy of, the current version of the OPC Materials so long as User abides by the
terms contained in this Non-Exclusive License Agreement ("Agreement"). If User does not agree to the
terms and conditions contained in this Agreement, the OPC Materials may not be used, and all copies (in
all formats) of such materials in User’s possession must either be destroyed or returned to the OPC
Foundation. By using the OPC Materials, User (including any employees and agents of User) agrees to be
bound by the terms of this Agreement.

All OPC Materials, unless explicitly designated otherwise, are only available to currently registered
members of the OPC Foundation (an "Active Member"). If the User is not an employee or agent of an
Active Member then the User is prohibited from using the OPC Materials and all copies (in all formats) of
such materials in User’s possession must either be destroyed or returned to the OPC Foundation.

LICENSE GRANT:

Subject to the terms and conditions of this Agreement, the OPC Foundation hereby grants to User a non-
exclusive, royalty-free, limited license to use, copy, display and distribute the OPC Materials in order to
make, use, sell or otherwise distribute any products and/or product literature that are compliant with the
standards included in the OPC Materials. User may not distribute OPC Materials outside of the Active
Member organization to which User belongs unless the OPC Foundation has explicitly designated the OPC
Material for public use.

All copies of the OPC Materials made and/or distributed by User must include all copyright and other
proprietary rights notices included on or in the copy of such materials provided to User by the OPC
Foundation.

The OPC Foundation shall retain all right, title and interest (including, without limitation, the copyrights) in
the OPC Materials, subject to the limited license granted to User under this Agreement.

3

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

The following additional restrictions apply to all OPC Materials that are software source code, libraries or
executables:

1. User is requested to acknowledge the use of the OPC Materials and provide a link to the OPC
Foundation home page www.opcfoundation.org from the About box of the User’s or Active
Member’s application(s).

2. User may include the source code, modified source code, built binaries or modified built binaries

within User’s own applications for either personal or commercial use except for:

a) The OPC Foundation software source code or binaries cannot be sold as is, either
individually or together.

b) The OPC Foundation software source code or binaries cannot be modified and then
sold as a library component, either individually or together.

In other words, User may use OPC Foundation software to enhance the User’s applications and to ensure
compliance with the various OPC specifications. User is prohibited from gaining commercially from the
OPC software itself.

WARRANTY AND LIABILITY DISCLAIMERS:

User acknowledges that the OPC Foundation has provided the OPC Materials for informational purposes
only in order to help User understand the relevant OPC specifications. THE OPC MATERIALS ARE
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF PERFORMANCE, MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. USER BEARS ALL RISK
RELATING TO QUALITY, DESIGN, USE AND PERFORMANCE OF THE OPC MATERIALS. The
OPC Foundation and its members do not warrant that the OPC Materials, their design or their use will meet
User’s requirements, operate without interruption or be error free.

IN NO EVENT SHALL THE OPC FOUNDATION, ITS MEMBERS, OR ANY THIRD PARTY BE
LIABLE FOR ANY COSTS, EXPENSES, LOSSES, DAMAGES (INCLUDING, BUT NOT LIMITED
TO, DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL OR PUNITIVE DAMAGES)
OR INJURIES INCURRED BY USER OR ANY THIRD PARTY AS A RESULT OF THIS
AGREEMENT OR ANY USE OF THE OPC MATERIALS..

4

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

GENERAL PROVISIONS:

This Agreement and User’s license to the OPC Materials shall be terminated (a) by User ceasing all use of
the OPC Materials, (b) by User obtaining a superseding version of the OPC Materials, or (c) by the OPC
Foundation, at its option, if User commits a material breach hereof. Upon any termination of this
Agreement, User shall immediately cease all use of the OPC Materials, destroy all copies thereof then in its
possession and take such other actions as the OPC Foundation may reasonably request to ensure that no
copies of the OPC Materials licensed under this Agreement remain in its possession.

User shall not export or re-export the OPC Materials or any product produced directly by the use thereof to
any person or destination that is not authorized to receive them under the export control laws and
regulations of the United States.

The Software and Documentation are provided with Restricted Rights. Use, duplication or disclosure by
the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs
227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at
DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 subdivision (c)(1) and (2), as applicable. Contractor/ manufacturer is the OPC Foundation, 16101 N.
82nd Street, Suite 3B, Scottsdale, AZ 85260-1830, USA.

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the
validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its
choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any
prior understanding or agreement (oral or written) relating to, the OPC Materials.

5

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Revision 1.01 Highlights
This revision includes additional minor clarifications to certain ambiguities which were discovered during
Interoperability sessions and during the development of the Compliance Test. The affected sections
include:

• Added link to OPC Forum for OPC XML-DA errata (1.6).
• Added clarifications for data type conversions (2.7.4).
• Modified rule for the availability of the Element DiagnosticInfo in ItemValue if no DiagnosticInfo

is available (3.1.5).
• Added comments to ReturnItemName and ReturnItemPath in the RequestOptions (3.1.6).
• Added E_BADTYPE to the summary list of OPCError (3.1.9).
• Added comment to MaxAge description for Read (3.3.1).
• Added requirement that servers must not allow conversions from strings during writes (3.4.1).
• Removed error code E_NOSUBSCRIPTION from the list of possible errors for

SubscriptionPolledRefreshResponse (3.6.2).
• Added error E_NOSUBSCRIPTION to the list of possible errors for SubscriptionCancelResponse

(3.7.2).
• Added comment to SubscriptionPolledRefresh (3.6.1) to clarify the behaviour for the first

SubscriptionPolledRefresh call after Subscribe.
• Clarified the use of the value element in a response to a write only item (3.3.2) (3.4.1) (3.5.2).
• Added suggestion that clients always specify a non-zero SubscriptionPingRate (3.5.1).

6

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Table of Contents

1. INTRODUCTION ...9
1.1 BACKGROUND ..9
1.2 PURPOSE...9
1.3 RELATIONSHIP TO OTHER OPC SPECIFICATIONS ...9
1.4 DELIVERABLES...9
1.5 PREREQUISITES ..9
1.6 XML-DA ERRATA...10
2. FUNDAMENTAL CONCEPTS...11
2.1 SOAP...11
2.2 NAME SPACE..11
2.3 OPC-XML-DA SERVER DETECTION ...11
2.4 LOCALE IDS ...11
2.5 SUBSCRIPTION ARCHITECTURE...12

2.5.1 Basic Polled Refresh Approach ...13
2.5.2 Advanced Polled Refresh Approach..14
2.5.3 Data Management Optimization..16
2.5.4 Buffered Data ..18
2.5.5 Timestamps..20

2.6 FAULTS AND RESULT CODES..23
2.7 DATA TYPES FOR ITEM VALUES...25

2.7.1 Simple..25
2.7.2 Enumeration ..26
2.7.3 Array..26
2.7.4 Data Range and Precision..27
2.7.5 Data Types and Localization ...28
2.7.6 Data Type Conversions..29

2.8 SECURITY ...29
2.9 COMPLIANCE..30
3. OPC XML-DA SCHEMA REFERENCE ...31
3.1 BASE SCHEMAS ..31

3.1.1 Hierarchical Parameters...31
3.1.2 Null Parameters ...32
3.1.3 RequestList ..33
3.1.4 RequestItem...33
3.1.5 ItemValue ..34
3.1.6 RequestOptions..38
3.1.7 ServerState...40
3.1.8 ReplyBase..40
3.1.9 OPCError...41
3.1.10 ItemProperty ..42

3.2 GETSTATUS..47
3.2.1 GetStatus..47
3.2.2 GetStatusResponse ..48

3.3 READ..50
3.3.1 Read...50
3.3.2 ReadResponse..53

3.4 WRITE ..56
3.4.1 Write ..56
3.4.2 WriteResponse...59

7

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.5 SUBSCRIBE ...61

3.5.1 Subscribe ...61
3.5.2 SubscribeResponse ..64

3.6 SUBSCRIPTIONPOLLEDREFRESH...67
3.6.1 SubscriptionPolledRefresh ..67
3.6.2 SubscriptionPolledRefreshResponse ...69

3.7 SUBSCRIPTIONCANCEL...72
3.7.1 SubscriptionCancel..72
3.7.2 SubscriptionCancelResponse...73

3.8 BROWSE ...74
3.8.1 Browse...74
3.8.2 BrowseResponse..77

3.9 GETPROPERTIES ...81
3.9.1 GetProperties ...81
3.9.2 GetPropertiesResponse..83

4. TRANSPORTS ..85

5. APPENDIX A - PATENT ISSUES ..87

6. APPENDIX B - FORMAL SCHEMAS (WSDL)..89

8

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

1. Introduction

1.1 Background
The OPC Foundation has defined interfaces to Data Access Servers, Event Servers, Batch Servers, and
History Data Access Servers. These servers have information that is valuable to the enterprise, and is
currently being provided to enterprise applications via OLE/COM based interfaces.

XML, the eXtensible Markup Language, and XML-based schema languages provide another means to
describe and exchange structured information between collaborating applications. XML is a
technology that is more readily available across a wide range of platforms. OPC XML-Data Access
(OPC XML-DA) is the OPC Foundation’s adoption of the XML set of technologies to facilitate the
exchange of plant data across the internet, and upwards into the enterprise domain.

1.2 Purpose
The purpose of this document is to continue OPC’s goal of enabling and promoting interoperability of
applications. The XML-DA based interfaces will simplify sharing and exchange of OPC data amongst
the various levels of the plant hierarchy (low level devices and up to enterprise systems), and to a
wider range of platforms.

The goal for this document is to provide:

� Support for OPC Data Access 2.0x/3.0 data

� Support for HTTP, and SOAP

� Support for Subscription based services

� Support for a Security approach

1.3 Relationship to Other OPC Specifications
This specification is analogous to an Automation Specification, which is a companion document to a
Custom Specification. The Custom Specification provides the base concepts and capabilities. OPC
then specifies how these base concepts and capabilities are exposed as Automation interfaces in the
Automation Specification. The XML-DA Specification is a companion to the OPC Data Access 3.0
Specification.

XML-DA servers may stand alone, or may be developed to wrap COM based 3.0, and even 2.0x
servers.

1.4 Deliverables
This document covers the analysis and design for an XML based interface to exchange Data Access
2.0x and 3.0 type data. This document will also minimally specify transport specific interoperability
requirements.

Sample code, or reference implementations will supplement this document to help vendors understand
and leverage this technology.

1.5 Prerequisites
Readers are expected to be familiar with the applicable OPC Specifications.

These following document titles and others can be found at the following Web address:
http://www.opcfoundation.org/

9

http://www.opcfoundation.org/

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

OPC Data Access Custom Interface Standard 2.05

OPC Data Access Custom Interface Standard 3.0

OPC Common Definitions and Interfaces 1.0

OPC Security Custom Interface Standard

Readers should be familiar with XML.

Information regarding XML and various links to related sites, white papers, specs, etc, can be found at
the following Web address: http://www.w3.org/XML/

1.6 XML-DA Errata
Any errors, omissions or corrections to this OPC XML-DA Specification will be posted to the
OPCXML-DA Errata topic of the OPC foundation forums:

http://www.opcfoundation.org/forum/viewtopic.php?t=1113

10

http://www.w3.org/XML/
http://www.opcfoundation.org/forum/viewtopic.php?t=1113

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

2. Fundamental Concepts

2.1 SOAP
OPC XML-DA is being developed in a manner that leverages concepts from Simple Object Access
Protocol (SOAP) 1.1 found at http://www.w3.org/TR/SOAP/.

OPC XML-DA is modeled in a manner which allows its structured information to be delivered in a
SOAP message as a SOAP Body.

2.2 Name Space
The OPC XML-DA Specification is consistent with SOAP Notational Conventions. The following is
borrowed from the SOAP Spec for the reader’s convenience:

“The namespace prefixes "SOAP-ENV" and "SOAP-ENC" used in this document are associated
with the SOAP namespaces "http://schemas.xmlsoap.org/soap/envelope/" and
"http://schemas.xmlsoap.org/soap/encoding/" respectively.

Throughout this document the namespace prefix "xsi" is associated with the URI
"http://www.w3.org/2001/XMLSchema-instance" which is defined in the XML Schemas
specification [11].

Similarly, the namespace prefix "xsd" is associated with the URI
"http://www.w3.org/2001/XMLSchema" which is defined in [10]. The namespace prefix "tns" is
used to indicate whatever is the target namespace of the current document. All other namespace
prefixes are samples only.”

OPC XML-DA addresses OPC Items via ItemPath, and ItemName. These concepts are described later
in the document.

2.3 OPC-XML-DA Server Detection
Currently, OPC has not defined a mechanism to detect nodes with OPC-XML-DA Servers or to detect
OPC-XML-DA Servers on a specific node. The Universal Description, Discovery and Integration
(UDDI) protocol (see http://www.uddi.org) is a widely used standard for web services and it will be
the likely basis for any future OPC specification for web service discovery. Until then, an OPC-XML-
DA client needs to know the URL of any OPC-XML-DA server it wants to use.

Note that web service implementations never need to know their URLs since the person deploying and
maintaining the web service on a particular machine always assigns them. In addition, these URLs (as
defined by RC 1788) allow for an optional port number, as a result, OPC-XML-DA web services are
not required to use the standard HTTP Port 80 (provided the web server used supports configurable
port numbers).

2.4 Locale IDs
Some data in the response of a server is subject to localization. These are:

Verbose Error information (see the Text element in OPCError) •

• Values of type ‘string’ (this is completely server-specific)

Unlike previous OPC data access specifications, the OPC XML-DA specification describes data
exchange in an environment that assumes no persistent connection between the client and the server.
Although the server may maintain some state for some specific services, locale information needs to be
requested in each call (“LocaleID” - see RequestOptions).

11

http://www.w3.org/TR/SOAP/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.uddi.org/

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

In XML-DA the LocaleID is specified as a string with the following format:

<language>[-<country>]

Where <language> is the two letter ISO 639 code for a language and <country> is the two-letter ISO
3166 code for the country. This format is a subset of the format specified by RFC 3066. The following
table lists several sample Windows LCIDs and the corresponding XML-DA LocaleID.

Locale Windows LCID XML-DA LocaleID

Neutral 0x0000 No equivalent.

Invariant 0x007F Empty string ("").

System Default 0x0400 No equivalent.

User Default 0x0800 No equivalent.

English 0x0009 en

English (US) 0x0409 en-US

German 0x0007 de

German (Germany) 0x0407 de-DE

German (Austrian) 0x0C07 de-AT

The invariant locale is neither language nor country specific. It is a third type of locale that is culture-
insensitive. It is associated with the English language but not with a country or region. It primarily is
used internally by applications for locale independent operations such as system calls or file
serialization. The invariant locale is not the default locale since the default locale for a system or a user
always specifies a specific language and country. XML-DA clients that wish to use the default locale
for the server must not specify any value for the LocaleID. Servers must return its default locale as the
RevisedLocaleID in this case. Clients that specify the invariant locale (i.e. an empty string) are
requesting that results be returned in a culture insensitive format. A server may or may not choose to
support the invariant locale and should respond to the client accordingly.

The neutral, system default and user default LCIDs have no equivalent in XML-DA. Clients are
required to explicitly request a locale or allow the server to choose the locale by not specifying any
value for the LocaleID.

In the event that the server does not support the requested locale, it is expected that the server select the
best matching locale by ignoring the country component of the locale. If the server does not support
the country neutral locale for a specific language then the server should select its default locale. In all
cases the server should set the RevisedLocaleID in the ReplyBase object to indicate what locale was
actually used if it differs from the requested locale.

The clients may alternatively determine the server’s full set of supported LocaleIDs by querying the
server via a GetStatus. This gives the client the option to either select a supported LocaleID or use data
returned by the server based on the RevisedLocaleID. In this case the client is still free to make
requests but with the understanding that localized strings will be returned in the language specified by
the value of the RevisedLocaleID.

2.5 Subscription architecture
The design of the OPC-XML-DA subscription employs a “polled-pull” style of subscription. The
client thus enters into a loose contract with the server. The client application initiates the subscription

12

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

and agrees to issue periodic refresh requests. In order to better simulate the callback capabilities of the
original COM-based OPC DA design a “Controlled Response” mechanism is also included in the
design. This mechanism can be used to reduce the latency time of reporting a value change to a client
and minimize the number of round trips between the client and server.

XML-DA supports the following subscription based services: Subscribe, SubscriptionPolledRefresh,
and SubscriptionCancel. Subscribe is used to initiate a subscription contract with a server.
SubscriptionPolledRefresh is called periodically to acquire the latest item value changes.
SubscriptionCancel is used to terminate the subscription contract with the server.

2.5.1 Basic Polled Refresh Approach
The basic polled subscription interaction between client and server is outlined below in Figure 2.1. The
client initiates the subscription and the server returns a subscription handle in response to the request.
The server will also return any initial values (value, quality, and timestamp) that are readily available if
the ReturnValuesOnReply option is set to true. The client then enters a periodic polling cycle and
continues to poll periodically by issuing subscription refresh requests passing in the subscription
handle each time. The server responds immediately returning all value and/or quality changes since the
previous poll. This process continues until the client no longer wishes to maintain the subscription at
which point it issues a subscription cancel request to the server. The server cleans up allocated
resources and performs any other actions necessary to end the subscription contract it held with the
client.

Subscription(items[])

Establish Subscription
Return handle and any
available item valuesreturn(handle, values[])

Delay polling period

Done?

Initiate Subscription

Poll for changes
SubscriptionPolledRefresh(handle) Return any value or

quality changes since
last request

End Subscription

Yes

No

return(values[])

Return any value
changes since last

request

SubscriptionCancel(handle)

return()

Figure 2.1 Basic polled subscription interaction diagram

The client application must be prepared to handle error conditions from the server. The type of error
returned will dictate what action needs to be taken. Figure 2.2 below illustrates the logic flow of a
client when dealing with critical subscription errors. If the subscription operation fails then the client
should retry if the error is such that the condition could be cleared over time (i.e., communications
errors). It is expected that a well-designed client will interpret the error codes and take appropriate
actions. This includes handling timeouts, both on the initial Subscription call, and the subsequent
SubscriptionPolledRefresh calls.

It is important to note that in the case of fatal errors or timeouts on SubscriptionPolledRefresh calls the
client needs to determine the appropriate error response; reissue the same or a revised

13

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

SubscriptionPolledRefresh call, or cleanup the existing subscription and start over by creating a new
subscription, and then cancel the old subscription. The servers may take steps to optimize this
subscription “re-creation” process.

D e la y p o llin g p e r io d

D o n e ?

C re a te S u b s c r ip t io n
(C a n c e l o ld

s u b s c r ip t io n , i f re q u ire d)

P o ll fo r c h a n g e s

E n d S u b s c r ip t io n

Y e s

N o

D e la y E r ro rs ?
Y e s

N o

E rro rs ?
Y e s

N o

S
er

ve
r

Figure 2.2 Error handling of polled subscriptions

2.5.2 Advanced Polled Refresh Approach
An advanced client application may elect to use the more sophisticated polling approach in order to
optimize the behavior of the server in its response to client requests for data and to more closely
simulate the traditional asynchronous callback provided with the OPC COM based interface. This
approach makes use of two Subscription Refresh parameters.

Holdtime - instructs the server to hold off returning from the SubscriptionPolledRefresh call
until the specified absolute server time is reached.

•

• Waittime -instructs the server to wait the specified duration (number of milliseconds) after the
Holdtime is reached before returning if there are no changes to report. A change in one of the
subscribed items, during this wait period, will result in the server returning immediately rather
than completing the wait time.

Using this approach the client application does not perform a delayed poll but rather delegates the
waiting to the server. The client may issue a SubscriptionPolledRefresh call as soon as it has processed

14

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

the returned changes provided by the previous call. By shifting the polling delays to the server side the
worst-case latency time to deliver a change to the client is minimized. Figure 2.3 and 2.4 below
illustrates the relative effects of the two parameters.

Minimum time for service to respond

Current
Time

Wait time

Hold time

Maximum time for service to respond

Figure 2.3 Minimum and Maximum response times

The client application sets the Holdtime parameter based on the maximum update rate needed (as
specified as an absolute time value). This parameter is analogous to the ‘maximum allowable latency’ -
the smaller this delay the smaller the latency will be in reporting changes. That is to say, if there are
changes to report they will be returned only after Holdtime has passed. The side effect of reducing the
Holdtime is the number of client-to-server round trips will increase resulting in more network traffic
and more client and server processing. The client application sets the Waittime parameter to a value
that balances the need for a reasonably short time period to quickly detect server failures with the need
for a reasonably long time period to minimize client to server round trips. If there are no changes to
report, the server will not respond to the client refresh request until the sum of Holdtime and Waittime
has elapsed. If at the end of the Holdtime and Waittime and there are still no values which have
changed, the server will still respond with a response although the response will not have any Item
Values.

The client application should manage a timeout period that is greater than the sum of Holdtime,
Waittime and network round trip time. The client should always be aware that specifying values that
are too large may result in other transport based errors.

Changes occurring before or during this time
will result in a return at the end of Holdtime

Current
Time

Wait time

Hold time

Changes occurring during this time will
result in an immediate return

Figure 2.4 Response timing

15

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

•

•

•

A subscription contract will be considered abandoned if the client application fails to issue
SubscriptionPolledRefresh calls. The server is free to terminate the subscription any time after the
period specified by SubscriptionPingRate has elapsed since the last response to a refresh service call.

A server is free to return from the SubscriptionPolledRefresh call sooner than the requested
“Holdtime” in the case an error has occurred that needs to be reported back to the client.

A client application electing to make use of the simulated callback polling service outlined here must
take into account the extended time period during which it will be waiting on the server to respond.
Either asynchronous subscription refresh calls should be made or a dedicated refresh polling thread
should be used.

2.5.3 Data Management Optimization
By subscribing to data items the client identifies to the server that it is interested in those specific data
items. By entering into this loose contract with the server via the Subscribe service the client may
provide the server with suggestions on the time and data change characteristics of the data of interest.
These suggestions are meant to further optimize the relationship between client and server and the
server’s ability to manage its data. The suggestions are provided via the attributes:

RequestedSamplingRate

EnableBuffering

DeadBand

These attributes may or may not be useful to the server depending on how the server maintains the data
that is within its domain.

A typical scenario is a server which front ends some device, and is only able to periodically poll the
device to update the server’s data cache. The server may be limited by the device as to the periodicity
of the data polling: the fastest practical rate, the specific periods, and the total bandwidth of polling
requests. The server may arbitrarily balance these constraints, or it might be responsive to client
suggestions.

The client may specify a RequestedSamplingRate at the List level (described later in document) which
indicates the fastest rate at which the server should poll the underlying device for data changes.
Polling at rates faster than this rate is acceptable, but not necessary to meet the needs of the client. The
client may also specify 0 for RequestedSamplingRate which indicates that the server should use the
fastest practical rate.

How the server deals with the sampling rate and how often it actually polls the hardware internally is a
server implementation detail.

The client may also specify a RequestedSamplingRate at the Item level (described later in document).
By specifying a RequestedSamplingRate different than List level RequestedSamplingRate the client is
requesting that the server override the List level SamplingRate for purposes as the suggestion for the
server’s underlying device poll rate.

In many cases the RequestedSamplingRate(s) are giving the Server an indication of the fastest that a
client will be submitting SubscriptionPolledRefresh requests. The RevisedSamplingRate is in return
giving the client an indication of the fastest that a client should be submitting
SubscriptionPolledRefresh requests.

By specifying EnableBuffering = True, the server will save all value changes detected at the specified
rate in a buffer for return to the client at the next SubscriptionPolledRefresh request.

16

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

The following table indicates the expected behavior for a server that front ends a device, which must
be polled for data and is able to respond to the client’s requests. The attributes SamplingRate (List),
and SamplingRate (Item) in the table represent the values requested by the client, and may not be
exactly equivalent to those that are returned by the server as “Revised” values. The client is describing
the desired behavior via the requested attributes. The server will attempt to honor the client’s desired
behavior.

SamplingRa
te (List)

SamplingRate
(Item)

Values Expected behavior

Missing Missing LCV Server will attempt to poll underlying device at some
server default rate and return the most accurate data
available.

0
(Fastest)

Missing LCV Server will attempt to poll underlying device at fastest
practical rate and return the most accurate data
available.

> 0 Missing LCV Server will attempt to poll underlying device at the
List level SamplingRate and return the most accurate
data available.

N/A 0
(Fastest)

LCV Server will attempt to poll underlying device at fastest
practical rate and return the most accurate data
available.

N/A > 0 LCV Server will attempt to poll underlying device at the
Item level SamplingRate and return the most accurate
data available.

Note:

 LCV=Latest Changed Value
 N/A=Not Applicable

As an example: RequestedSamplingRate=500 msec. The server can only support 1 second update
rates, so it returns RevisedSamplingRate=1 second.

In all cases above, if EnableBuffering is True, then the server will poll the underlying device at the
SamplingRate and return to the client all (or as many as resources allow) changed values (i.e., Latest
Changed Value and any buffered values) from the last SubscriptionPolledRefresh request. Although
the server may be sampling at a faster rate than the SamplingRate to support other clients, the client
should only expect values at the negotiated SamplingRate.

17

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

The following table uses some pseudo VB code to describe the behavior of the server in responding to
“Requested” SamplingRate at the List (RqtSR-List) and Item (RqtSR-Item) level for polling type data.

If RqtSR-List Missing and RqtSR-Item Missing Then

RevisedSamplingRate-List = Minimum (Fastest Supported Item Sampling Rates) or Default

RevisedSamplingRate-Item = Minimum (Fastest Supported Item Sampling Rate) or Default

EndIf

If RqtSR-List > Minimum (Fastest Supported Item Sampling Rates) Then

RevisedSamplingRate-List = RqtSR-List

Else

RevisedSamplingRate-List = Minimum (Fastest Supported Item Sampling Rates)

EndIf

If RqtSR-Item Missing and RqtSR-List NOT Missing Then

RqtSR-Item = RqtSR-List

EndIf

If RqtSR-Item > Fastest Supported Item Sampling Rate Then

RevisedSamplingRate- Item = RqtSR- Item

Else

RevisedSamplingRate-Item = Fastest Supported Item Sampling Rate

EndIf

The server may be supporting data which is collected based on a sampling model, or generated based
on an exception based model. The Fastest Supported Item Sampling Rate may be equal to 0 which
indicates that the data item is exception based versus being sampled at some period. If the client
passes in a 0 for Requested SamplingRate, then the server may respond with either 0 or some value
which represents the fastest practical rate that would be of interest to the client. The client may use the
RevisedSamplingRate values as a hint for how often to initiate a SubscriptionPolledRefresh request.
Not all value changes are guaranteed to be returned if the client passes in Requested SamplingRate > 0,
and the data is exception based.

DeadBand specifies the percentage of full engineering unit range of an item’s value that must change
prior to the value being of interest to the client. “Uninteresting” value changes are those which are less
than the Deadband and are not maintained or saved by the server for return to the client in a
SubscriptionPolledRefresh as described below.

2.5.4 Buffered Data
As mentioned above, if EnableBuffering = True the server maintains a buffer of the changed values
detected in between SubscriptionPolledRefresh requests in addition to the cached value for an item.
The server may then return more than 1 value to a client for a buffered item in a
SubscriptionPolledRefreshResponse.

When buffering is OFF the server must deliver at most 1 value per item per
SubscriptionPolledRefreshResponse and that will be the latest value obtained (LCV). Where buffering
is ON the server may return the maximum number of values as determined by the associated sampling

18

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

rate. The expected behavior for servers is that they deliver values in which the interval between
timestamps is as close to the SamplingRate as possible and where any missing values are the result of
deadband logic. The server may deliver fewer values than dictated by the sampling rate based on
EnableBuffering, Deadband and implementation constraints. The server will neither buffer nor deliver
values for a particular item if there have not been any changes related to that item in between the
SubscriptionPolledRefresh requests, except and only if ReturnAllItems is True.

Because the server may need to buffer an unknown amount of data, the server is allowed to constrain
the buffer to a fixed maximum amount of data. If the server determines that its maximum buffer
capacity has been reached, then it will push out the older data, keeping the newest data in the buffer.
The server is expected to maintain at least the most current value (LCV) for each item that it is
tracking, i.e., its cache value.

The following is an example of a server receiving changed values for Items 1-4, and how it would keep
these values in its data cache, and its data buffer. The notation used for the values are:

Item, Timestamp, (Value index), Buffer/Cache.

Item 1, 00:01, (1), Buffer

Item 1, 00:02, (2), Buffer

Item 4, 00:01, (3), Cache

Item 2, 00:01, (4), Buffer

Item 1, 00:03, (5), Buffer

Item 2, 00:02, (6), Buffer

Item 1, 00:04, (7), Cache

Item 2, 00:03, (8), Buffer

Item 2, 00:04, (9), Cache

Item 3, 00:03, (10), Cache

If the buffer can only hold 6, and the following items come in

Item 3, 00:04, (11)

Item 3, 00:05, (12)

Item 3, 00:06, (13)

The Server would flush (1), (2), and (4). The Server would maintain (3) because it is the latest
changed (cache) value for Item 4.

The server is required to return values for any particular item in chronological order. Values from
different items may be interspersed but values for any specific item must be ordered by time for that
item. There is no requirement for values from different items to be in any order. The values which are
returned will always return at least the current value for a changed item. A sequence of values which
would meet these requirements are that all of the buffered items are returned followed by the most
current items which have changed in the period since the last polled refresh. The example presented
could return:

Item 1, 00:03, (5), Buffer

Item 2, 00:02, (6), Buffer

Item 2, 00:03, (8), Buffer

Item 3, 00:03, (10), Buffer

19

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Item 3, 00:04, (11), Buffer

Item 3, 00:05, (12), Buffer

Item 1, 00:04, (7), Cache

Item 2, 00:04, (9), Cache

Item 3, 00:06, (13), Cache

Item 4, 00:01, (3), Cache

Buffering of data may result in unexpected behavior when using a deadband limit and the server
encounters a resource limitation on the number of values that can be maintained. It is realistically
possible that multiple samples of a value exceed the item’s deadband limit, and the server thus buffers
one or more of these samples. It is also then possible that all of the samples that were buffered are
flushed out due to memory limitations. The current value could be either identical to the previous
value sent to the client or within the deadband limit. The client will thus get the current value which
does not exceed the deadband limit of the previous value it received, but will not get the transient
buffered values.

Refer to the OPC DA Custom Specification for additional details on this topic.

2.5.5 Timestamps
The servers will provide the most accurate timestamp to associate with a value(s). The Timestamp
should indicate the time that the value and quality was obtained by the device (if this is available) or
the time the server updated or validated the value and quality in its CACHE.

If the Item Value is an array, then there is a single Timestamp which will be associated with all array
elements. The server is responsible for determining/returning the most accurate timestamp.

Note that if a device or server is checking a value every 10 seconds then the expected behavior would
be that the timestamp of that value would be updated every 10 seconds (even if the value is not
actually changing). Thus the time stamp reflects the time at which the server knew the corresponding
value was accurate.

For SubscriptionPolledRefresh requests the changing exception based data will exhibit a Timestamp
which will correspond to the time that the value changed, and not likely correspond with any requested
sampling rate period. The caveat for this behavior is when the client has specified ReturnAllItems =
True. For those items which the value has not changed, the server will include the last exception
generated value, but use the current Timestamp. This behavior is identical to that expected if a Read
had been done for those non changed items at that time.

The following tables present examples of the associated Timestamp for sampled, and exception based
values. The behavior of a Read is included as a comparison.

20

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

•

•

The following table depicts the values for 2 items over time: t0 to t10.

F101 is a sampled data item (SamplingRate = 2 seconds)

B101 is an exception based data item

Time F101 B101
0 2 1
1
2 2
3 3
4 5
5 6
6 10
7 9
8 10
9 10
10 11 5

Subscribe done at t0 with ReturnValuesOnReply set

Sampling Rate at 2 seconds for F101, 0 for B101

Reads or Polled Refreshes at 2 sec

Time Read
(F101)

Read (B101) Subscribe /
Polled
Refresh
(F101)

Subscribe /
Polled
Refresh
(B101)

Subscribe /
Polled
Refresh
(BE) (F101)

Subscribe /
Polled Refresh
(BE) (B101)

0 2, t0 1, t0 2, t0 1, t0 2, t0 1, t0
2 2, t2 1, t2
4 5, t4 3, t4 5, t4 3, t3 5, t4 3, t3
6 10, t6 6, t6 10, t6 6, t5 10, t6 6, t5
8 10, t8 9, t8 9, t7 9, t7
10 11, t10 5, t10 11, t10 5, t10 11, t10 10, t9*

5, t10
Note: BE = Buffering Enabled

*If Sampling Rate for B101=2, then this value would not be returned

The following scenarios have ReturnAllItems set.

Time Read (F101) Read (B101) Subscribe /
Polled
Refresh
(F101)

Subscribe /
Polled
Refresh
(B101)

Subscribe /
Polled
Refresh
(BE) (F101)

Subscribe /
Polled Refresh
(BE) (B101)

0 2, t0 1, t0 2, t0 1, t0 2, t0 1, t0
2 2, t2 1, t2 2, t2 1, t2 2, t2 1, t2
4 5, t4 3, t4 5, t4 3, t3 5, t4 3, t3
6 10, t6 6, t6 10, t6 6, t5 10, t6 6, t5
8 10, t8 9, t8 10, t8 9, t7 10, t8 9, t7
10 11, t10 5, t10 11, t10 5, t10 11, t10 10, t9*

5, t10
Note: BE = Buffering Enabled

21

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

*If Sampling Rate for B101=2, then this value would not be returned

22

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

2.6 Faults and Result Codes
The OPC-XML-DA specification describes a set of behaviors that web services as exposed by the
server must implement and that web based client applications use. When abnormal conditions arise, the
services must be able to communicate exception information to applications on a per-operation and a
per-item basis.

When a given operation fails entirely, the web service must return a SOAP fault, as defined by the
SOAP specification. This would occur, for instance, in response to a badly formatted request (e.g.,
missing required attributes). No other results (e.g., item values) are returned. E_FAIL is for cases
where execution of the request fails due to unknown reasons, and the server is in a state that should
support that request. The following XML document is an example of a response returned to the client
containing a SOAP fault:
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
>
 <soap:Body>
 <soap:Fault>
 <faultcode xmlns:q0=http://opcfoundation.org/webservices/XMLDA/1.0/>
 q0:E_SERVERSTATE
 </faultcode>
 <faultstring>
 The operation could not complete due to an abnormal server state.
 </faultstring>
 <detail />
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

In this example the SOAP fault code is set to one of the error codes defined in this specification. An
XML-DA server must ensure that, whenever possible, the SOAP fault code is set properly and must
not rely on the default behavior for their development environment. The XML-DA server should also
return the error text for the LocaleID specified in the request.

The server state is made available via the ReplyBase. If the server state is “failed”, then the server
should reject all calls except GetStatus with a SOAP fault. If the server state is "suspended", or
“noConfig” the server should reject any data related calls (Read, Write, and Subscribe) with a SOAP
fault.

However, individual items may encounter critical or non-critical exceptions even when an operation as
a whole succeeds. OPC-XML-DA employs a mechanism similar to SOAP faults to express these item-
level errors.

Each item value in the result may have a ResultID attribute. The value of this attribute is an XML
qualified name. Similar to the HRESULT in the COM-based OPC Interfaces it may specify a critical
error or a non-critical exception (a so-called success code). The qualified names for critical errors have
the prefix “E_” (e.g., E_OUTOFMEMORY); the qualified names for non-critical exceptions have a
prefix of “S_” (like S_UNSUPPORTEDRATE).

In case of a critical error the returned value may not be useful. For non-critical exceptions the returned
value is useful, although the client may need to react to an abnormal condition. If the attribute is not
present, then the item has encountered no abnormal conditions and the value is useful.

While the result codes are very useful for applications to recognize and deal with error conditions, they
are not intended to be "human-readable". Client applications may request localized, human-readable
text for result codes from the web service with each transaction. The text appears in a series of non-

23

http://opcfoundation.org/webservices/XMLDA/1.0/

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

duplicated Errors elements in the body of the response. This allows the response to contain multiple
instances of the same Error ID that map to a single verbose OPC Error. See the example below which
has the same error associated with multiple items, and each of the ResultIDs points to one verbose
representation of the error. The server should use the LocaleID in determining the specific verbose
description to be returned.
<soap:Body>
 <ReadResponse xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <ReadResult RcvTime="2003-05-26T15:55:14.0250000-07:00"
ReplyTime="2003-05-26T15:55:14.1250000-07:00"
ServerState="running" />
 <RItemList>
 <Items ItemName="Simple Types/UInt1" ResultID="E_UNKNOWNITEMNAME">
 <Quality QualityField="bad" />
 </Items>
 <Items ItemName="Simple Types/UInt2" ResultID="E_UNKNOWNITEMNAME">
 <Quality QualityField="bad" />
 </Items>
 </RItemList>
 <Errors ID="E_UNKNOWNITEMNAME">
 <Text>The item name is no longer available in the server address
space.</Text>
 </Errors>
 </ReadResponse>
</soap:Body>

OPC-XML-DA defines a series of standard result codes (Success or Error) that have specific
applications in data access operations. These codes are always qualified with the namespace
http://opcfoundation.org/webservices/XMLDA/1.0/.

Vendors may choose to create their own custom result codes, but these must be qualified with a
vendor-specific namespace (i.e. "http://company.com/etc"). Please refer to the W3C XML 1.0
specification for more information about namespaces and qualified names. Note that vendors are still
required to use the standard codes where specifically mentioned. Vendor result codes also have to use
the convention that success codes begin with “S_” and error codes begin with “E_”.

Success codes and error codes for each service are listed as part of the response messages in the
sections that describe those services.

24

http://opcfoundation.org/webservices/XMLDA/1.0/
http://company.com/etc

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

2.7 Data Types for Item Values

2.7.1 Simple
The supported data types are a subset of those defined in “XML Schema Part 2: Datatypes”
http://www.w3.org/TR/xmlschema-2/, and are consistent with those provided by the OPC Data Access
Custom Interface.

The data types supported by OPC XML-DA Servers are presented in the table below.

Data Type Description Variant Data
Type

string A sequence of UNICODE characters. VT_BSTR

boolean A binary logic value (true or false). VT_BOOL

float An IEEE single-precision 32-bit floating point value. VT_R4

double An IEEE double-precision 64-bit floating point value. VT_R8

decimal A fixed-point decimal value with arbitrary precision. VT_CY

long A 64-bit signed integer value. VT_I8

int A 32-bit signed integer value. VT_I4

short A 16-bit signed integer value. VT_I2

byte An 8-bit signed integer value.

Note this differs from the definition of ‘byte’ used in
most programming languages.

VT_I1

unsignedLong A 64-bit unsigned integer value. VT_UI8

unsignedInt A 32-bit unsigned integer value. VT_UI4

unsignedShort A 16-bit unsigned integer value. VT_UI2

unsignedByte An 8-bit unsigned integer value. VT_UI1

base64Binary A sequence of 8-bit values represented in XML with
Base-64 Encoding.

VT_UI1 |
VT_ARRAY

dateTime A specific instance in time. VT_DATE

time An instant of time that recurs every day.

See: W3C “XML Schema Part 2: Datatypes”

VT_DATE

date A Gregorian calendar date.

See: W3C “XML Schema Part 2: Datatypes”

VT_DATE

duration A duration of time as specified by Gregorian year,
month, day, hour, minute, and second components.

See: W3C “XML Schema Part 2: Datatypes”

VT_BSTR

QName An XML qualified name comprising of a name and a
namespace.

No
equivalent

25

http://www.w3.org/TR/xmlschema-2/

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

The name must be a valid XML element name and the
namespace must be a valid URI.

QNames are equal only if the name and the namespace
are equal.

anyType A value that has its type explicitly specified in the XML
document with the ‘type’ attribute.

This type only has relevance when used as an element in
an array (See 2.7.3).

VT_VARIANT

Note: The type attribute associated with the Item’s value element identifies the type of the value.

time, date, and duration are not supported fully by the .NET tools. time, and date are
transmitted as dateTime while duration is transmitted as a string. A ValueTypeQualifier
attribute is included when values of this type are transmitted between client and server. The
ValueTypeQualifier attribute uniquely identifies the intended value type of the value versus the type as
transmitted across the wire.

Servers may support values of a type other than those specified above, but there may be compatibility
issues with clients which do not understand those types.

2.7.2 Enumeration
“XML Schema Part 2: Datatypes” found at http://www.w3.org/TR/xmlschema-2/ defines
enumerations, and SOAP directly adopts the defined mechanism. Enumeration as defined is a data
type constraining facet which means that all data types except Boolean may have associated
enumerated values. OPC recommends against these defined enumerations as item values, but instead
recommends the use of the enumeration methodology as described in the OPC DA Specification.

Servers may return either the string representation or the integer representation of the enumeration
value. The type of returned value will be based on the client’s requested type, with the default being
the string representation of the enumeration.

The OPC Enumeration methodology provides two Item Properties: euType, and euInfo to let the client
be aware of whether the values are enumerated and if so, then euInfo would provide an array of strings
which represents the textual representation of the elements of the enumeration. See the ItemProperty
description in Section 3.1.10 for further details.

2.7.3 Array
OPC defines the following arrays for a subset of the simple types listed above:

Type Name Element Type Name

ArrayOfByte byte

ArrayOfShort short

ArrayOfUnsignedShort unsignedShort

ArrayOfInt int

ArrayOfUnsignedInt unsignedInt

ArrayOfLong long

26

http://www.w3.org/TR/xmlschema-2/

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

ArrayOfUnsignedLong unsignedLong

ArrayOfFloat float

ArrayOfDecimal decimal

ArrayOfDouble double

ArrayOfBoolean boolean

ArrayOfString string

ArrayOfDateTime dateTime

ArrayOfAnyType anyType

ArrayOfUnsignedByte is not supported because it is more efficient to transport these arrays as the
XML type base64Binary. The XML binary type uses base64 encoding to transmit the array as a single
XML element instead of one element for each byte.

ArrayOfAnyType allows each array element to be either a different simple type or another array. The
following XML fragment illustrates how this type appears in an XML document.
<Value xsi:type="ArrayOfAnyType">
 <anyType xsi:type="xsd:byte">127</anyType>
 <anyType xsi:type="xsd:unsignedByte">255</anyType>
 <anyType xsi:type="xsd:string">Hello<>World</anyType>
 <anyType xsi:type="ArrayOfInt">
 <int>-2147483648</int>
 <int>0</int>
 <int>2147483647</int>
 </anyType>
 <anyType xsi:type="ArrayOfAnyType">
 <anyType xsi:type="xsd:byte">127</anyType>
 <anyType xsi:type="xsd:unsignedByte">255</anyType>
 <anyType xsi:type="xsd:string">Hello<>World</anyType>
 <anyType xsi:type="ArrayOfInt">
 <int>-2147483648</int>
 <int>0</int>
 <int>2147483647</int>
 </anyType>
 </anyType>
</Value>

2.7.4 Data Range and Precision
Most implementers of this specification will need to represent the data types required by this
specification in a binary format that is appropriate for their development environment. This binary
representation will always impose restrictions on the range and precision of a value that are not defined
by the XML data type itself.

For example, consider a Windows based XML-DA client that wishes to write a 64-bit FILETIME
representation of a dateTime value to a UNIX based XML-DA server that uses a 32-bit UNIX time_t
representation for a dateTime values. In this situation, the server will not be able to accept valid XML
dateTime values (such as 1601-01-01) written by the client because they exceed the capacity of its
internal representation.

For this reason, this specification defines three item properties (minimum value, maximum value and
value precision) that allow an XML-DA server to publish any limitations on an item value imposed by
its internal representation of the item’s data type. A server must implement these properties whenever

27

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

it cannot support at least the default range and precision for an XML data type defined by this
specification.

Note that these properties may only be used for canonical data types that do not have an explicit range
and precision defined in the XML Schema specification.

The following table summarizes the default range and precision for each data type that does not have
an explicit range and precision defined by the XML Schema specification:

Data Type Minimum Value Maximum Value Value Precision

decimal 0.0001 922337203685477.5807 4 (digits) 1

dateTime 1900-01-01 00:00:00.000 2100-12-31 23:59:59.999 1000000 (ns) 2

time 00:00:00.000 23:59:59.999 1000000 (ns) 2

date 1900-01-01 2100-12-31 Not applicable

Duration Not applicable Not applicable 1000000 (ns) 2
1 The precision for decimal types indicates the maximum number of digits after the decimal place.
2 The precision for date/time types indicates the minimum time difference in nanoseconds.

A server that supports at least the range specified in the table does not need to implement the range
properties. In this situation, a client must be prepared to accept values that are outside these ranges. In
addition, a server must accept any value during a write that it returned during a read. A server may
return the error E_RANGE if the client writes a value outside the default range.

A server that explicitly specifies the range properties must only accept and return values within the
range. It must return the error E_RANGE if the client writes a value outside the range.

Note that the ranges for dateTime values only apply to items which have a canonical data type of
dateTime. Timestamps are intended to be values ‘close’ (e.g. ±1 year) to the current time. XML-DA
clients must be prepared to deal with errors if they write timestamps that are outside of this loosely
defined range.

The precision property is an approximation that is intended to provide guidance to a client. A server is
expected to silently round any value with more precision that it supports. This implies that a client may
encounter cases where the value read back from a server differs from the value that it wrote to the
server. This difference should be no more than the difference suggested by the value precision
property.

Note that the precision property only applies to writes and reads using the canonical data type for an
item. XML-DA clients should be prepared for round off errors whenever one data type is converted to
another.

2.7.5 Data Types and Localization
An XML-DA server must support conversions from any supported scalar data type to a string.

When converting a scalar value to a string, an XML-DA server must use either the XML string
representation for the data type or a localized string representation. If a server uses a localized string
representation it must attempt to use the locale specified by the client in the request. If it cannot use
that locale it may use another locale, however, the actual locale used should be returned in the response
to the client. This implies that the same locale should be used for all values returned within a single
request.

28

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

An XML-DA server may also support conversions from any supported array data type and to a string
using a vendor-defined syntax.

An XML-DA client cannot make any assumption about the syntax of the string value returned from a
server. More specifically, it cannot know whether the server used a localized representation or the
XML Schema representation for a given string value. If a client wishes to use the value returned for
any purpose other than display to the user then it should request the value in its canonical data type.

2.7.6 Data Type Conversions
An XML-DA server must support all of the Data Type conversions defined for the OPC DA Custom
Specification except as noted below.

String Values

An XML-DA server must not convert string values to any other data type during a write since
differences between the string representations of values in different locales may result in the incorrect
value being written. During a read, the server must support conversions from strings to any scalar data
type.

DateTime, Date, Time and Duration Values

An XML-DA Server must support conversions to and from strings for the dateTime, date, time and
duration data types (except during writes as noted above). An XML-DA server may support vendor
specific conversions to and from numeric values and these data types.

Boolean Values

An XML-DA Server must support conversions to and from boolean values for string and numeric data
types (except during writes as noted above).

For conversions from numeric values to boolean values, an XML-DA server must convert a zero value
to “false” and any non-zero value to “true”.

For conversions from boolean values to numeric values, an XML-DA server must convert a false value
to “0” and a true value to any non-zero value.

For conversion from a boolean value to a numeric value, an XML-DA must convert a true to a non-
zero value and a false to a zero value.

Decimal Values

An XML-DA Server must support conversions to and from decimal values for string and numeric data
types (except during writes as noted above).

Even if an XML-DA server does not have any items that are decimal type, it still must be able to parse
the XML message and determine if a specific decimal value can be converted to a numeric type that it
does support.

QName Values

An XML-DA Server is not required to support any data type conversions for the QName type.

2.8 Security
The assumption that OPC XML-DA makes is, that the transport will handle security, e.g., HTTPS

The OPC specifications define interfaces that provide open access to various forms of process control
information. Such information can be of great importance to the operations of an enterprise and should
therefore be protected. Vendors and end-users must work together to ensure that sensitive information

29

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

is guarded against unauthorized access. Unauthorized access can include both data espionage and
sabotage of critical control parameters.

In the past, many companies have simply chosen to adopt a "wide-open" security policy for DCOM
OPC servers and have relied on firewalls to protect from intruders. With the advent of web service
technology, process control information is no longer restricted to the confines of a LAN. Web services
are frequently deployed outside the firewall, potentially exposing important information to any person
connected to the Internet.

End-users (network and site administrators) are responsible for enabling and properly configuring the
security features of their selected web server components (for example, enabling the SSL capabilities
of Microsoft IIS). This may include restricting access to web services to authorized users.

Vendors may also provide additional mechanisms to allow finer control over the types of operations
that specific users are permitted to carry out on specific items (for example, using the Microsoft .NET
security classes).

It is highly recommended that, as a minimum, vendors provide a means to globally disable the Server’s
"write" capabilities, putting it into a "read-only" mode.

If a vendor does choose to provide custom mechanisms, then that vendor must be certain that they do
not compromise existing security mechanisms already in use. Custom mechanisms must be well
integrated with existing security mechanisms. For example, client authentication and identification
must be based on facilities supplied by the operating system (where available), rather than vendor-
specific approaches.

End-users are still responsible for configuring vendor-specific security mechanisms correctly. Vendors
should provide assistance with configuration as necessary.

The OPC Foundation is not responsible for any damage relating to compromised security. Vendors and
end-users must choose for themselves the security measures needed to ensure the safety of data
exposed via OPC.

Please refer to OPC Security Custom Interface Standard for additional insight into security concepts.

2.9 Compliance
OPC compliance tools have been developed to validate compliance of OPC Data Access (OPC-DA)
servers and OPC Alarm & Events (OPC-AE) servers. OPC compliance test suites have not been
developed for the OPC clients. The OPC Foundation will develop a compliance test suite for OPC
XML-DA servers to facilitate compliance to the OPC XML-DA specification. The compliance test
will be available within 6 months of release of the XML-DA specification.

30

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3. OPC XML-DA Schema Reference
This section includes a reference for the OPC XML-DA Services. The structure, parameters, and
behavior of each are defined.

The types of services to be supported are:

� Status: GetStatus, GetStatusResponse

� Read: Read, ReadResponse

� Write: Write, WriteResponse

� Subscription: Subscribe, SubscribeResponse

� Subscription Polled Refresh: SubscriptionPolledRefresh, SubscriptionPolledRefreshResponse

� Subscription Cancel: SubscriptionCancel, SubscriptionCancelResponse

� Browse: Browse, BrowseResponse

� Get Properties: GetProperties, GetPropertiesResponse

The section is to be used as a quick reference for the various OPC XML-DA services. Refer to the
Appendices for formal schema definitions. The pseudo schemas in this section are not intended to be
valid XML Schemas.

As a general convention the WSDL excerpts include the shorthand prefixes “s0:” and “s:” which
define the OPC XML-DA namespace and the XML schema namespace respectively.

All attributes are optional unless explicitly specified as required. The description of the services will
describe the expected behavior for attributes which are not included.

3.1 Base Schemas
OPC XML-DA defines base schemas which are contained by the other schemas to describe the
messages to be transported.

NOTE:

The WSDL fragments shown in the document are to facilitate understanding of the specification.

Implementers must use the published WSDL that accompanies this document when building web
applications that comply with this specification.

3.1.1 Hierarchical Parameters
The OPC XML-DA schemas are based on a hierarchical nature of some of the information.
Information (attributes) may be specified at the Request, List, or Item level. Information specified at a
lower level overrides information at a higher level. Omitted lower level attributes always imply that the
higher level attributes are to be used. The client may selectively override information. Not all requests
support all hierarchical levels.

As an example, a client provides MaxAge at the List level, and for certain items provides an overriding
value, yet the List level value will be used for the other items in the request.

31

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.1.2 Null Parameters

The OPC XML-DA schemas accommodate clients and servers passing null parameters. This is the
basis for supporting Hierarchical Parameters, and for providing responses which are subsets of the
Item List or Items in the request. Servers and clients should support null parameters by intelligently
ignoring them.

As an example, ItemPath = "" is not missing - which means that an ItemPath of "" at the item level
overrides the ItemPath at the list level. However, this distinction is only necessary where a missing
attribute has some meaning. In most cases, a null string or an empty string has the same meaning (i.e.
continuation point). The specification defines the interpretation of a missing attribute where it has a
different meaning from the default value for a type. By default, null and "" have the same meaning for
all string attributes.

32

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.1.3 RequestList

Description

RequestList is a conceptual type that includes attributes that are part of the request list types used in
read, write and subscribe requests. These attributes are described separately here for convenience.
<s:complexType name="RequestList">
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute ame="ReqType" type="s:QName" /> n
</s:complexType>

Tag Name Description

ItemPath A portion of the namespace pointing to the data. The ItemPath is server
specific and the client should not make any implications about its
content, structure, or consistency across servers. ItemPath may or may
not imply node, or server.

If an XML-DA server was front ending a DA based server, then an
example could be: \\NODE\OPC.DAServer.2.

ItemPath is a hierarchical parameter.

If ItemPath is Blank or missing at all levels of the hierarchy, then the
ItemName is expected to be a fully qualified name.

ReqType Specifies the client’s requested type for the Item’s value to be returned
by the server for a Read request. A Blank or missing or “anyType”
ReqType will indicate to the server to use the canonical data type.

If the client specifies a type, and the server is unable to respond to the
request, then an error will be returned in the Response.

See “Data Types for Item Values” section. Also see the corresponding
section in the OPC DA Custom Specification to see which conversions
are supported.

ReqType is a hierarchical parameter.

Comments:

As described above, the RequestList attributes are applied hierarchically to requests. Values that
appear at the list level are the defaults for items that do not explicitly specify a value for the same
attribute.

3.1.4 RequestItem

Description

RequestItem is a conceptual type that includes attributes that are part of the request item types used in
read and subscribe requests. These attributes are described separately here for convenience.
<s:complexType name="RequestItem">
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType type="s:QName" /> "
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ClientItemHandle" type="s:string" />
</s:complexType>

33

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Tag Name Description

ItemPath Same as attribute described in Section 3.1.3.

ReqType Same as attribute described in Section 3.1.3.

ItemName Identifier of the Data. It is free format (as in the OPC COM server).

Required attribute.

ClientItemHandle A string that can be passed by the client and be returned along with the
data. If the Client includes the ClientItemHandle attribute, then Server
must return it to the Client.

3.1.5 ItemValue

Description

ItemValue is the container of information that transports Item Values.

<s:complexType name="ItemValue">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="DiagnosticInfo"
type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="Value /> "
 <s:element minOccurs="0" maxOccurs="1" name="Quality"
type="s0:OPCQuality" />
 </s:sequence>
 <s:attribute name="ValueTypeQualifier" type="s:QName" use="optional" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ClientItemHandle" type="s:string" />
 <s:attribute name="Timestamp" type="s:dateTime" />
 <s:attribute name="ResultID" type="s:Qname" />
</s:complexType>

<s:complexType name="OPCQuality">
 <s:attribute default="good" name="QualityField" type="s0:qualityBits" />
 <s:attribute default="none" name="LimitField" type="s0:limitBits" />
 <s:attribute default="0" name="VendorField" type="s:unsignedByte" />
</s:complexType>

<s:simpleType name="qualityBits">
 <s:restriction base="s:string">
 <s:enumeration value="bad" />
 <s:enumeration value="badConfigurationError" />
 <s:enumeration value="badNotConnected" />
 <s:enumeration value="badDeviceFailure" />
 <s:enumeration value="badSensorFailure" />
 <s:enumeration value="badLastKnownValue" />
 <s:enumeration value="badCommFailure" />
 <s:enumeration value="badOutOfService" />
 <s:enumeration value="badWaitingForInitialData" />
 <s:enumeration value="uncertain" />
 <s:enumeration value="uncertainLastUsableValue" />
 <s:enumeration value="uncertainSensorNotAccurate" />
 <s:enumeration value="uncertainEUExceeded" />
 <s:enumeration value="uncertainSubNormal" />
 <s:enumeration value="good" />

34

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

 <s:enumeration value="goodLocalOverride" />
 </s:restriction>
</s:simpleType>

<s:simpleType name="limitBits">
 <s:restriction base="s:string">
 <s:enumeration value="none" />
 <s:enumeration value="low" />
 <s:enumeration value="high" />
 <s:enumeration value="constant" />
 </s:restriction>
</s:simpleType>

Tag Name Description

DiagnosticInfo Verbose server specific diagnostic information that provides
additional information relative to errors. If the client requests this
information, and if there is an ItemValue structure being returned,
then the server is required to return item specific diagnostic
information. If no diagnostic information is available, the server
must not return the element in the response. The server can also
provide diagnostic information if the request succeeded for the item
e.g if the quality is not good.

ItemPath A portion of the namespace pointing to the data. The ItemPath is
server specific and the client should not make any implications
about its content, structure, or consistency across servers. ItemPath
may or may not imply node, server, or group.

If an XML-DA server was front-ending a DA based server, then an
example could be: \\NODE\OPC.DAServer.2.

ItemPath is a hierarchical parameter.

If ItemPath is Blank or missing at all levels of the hierarchy,
then the ItemName is expected to be a fully qualified name.

ItemName Identifier of the Data. It is free format (as in the OPC COM server).

ClientItemHandle A String that can be passed by the client and be returned along with
the data. If the Client includes the ClientItemHandle attribute, then
Server must return it to the Client whenever the corresponding
ItemValue structure is returned.

ResultID If an error or a non-critical exception (minor problem) occurred this
ID will contain a qualified name of an OPCError. If the server also
returns verbose error messages the associated OPCError element
will be located elsewhere in the message. This allows multiple
instances of an Error ID to map to the same verbose OPC Error.

See section 2.6 for more details about result codes.

For pre-defined ResultIDs see section 3.1.9 on OPCError.

ValueTypeQualifier A ValueTypeQualifier attribute is included when values of type
time, date, and duration are tranmitted between client and server.
The ValueTypeQualifier attribute uniquely identifies the intended
value type of the value versus the type as transmitted across the
wire.

35

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

For all values of types other than time, date and duration, this
attribute will be missing or if not missing, then ignored.

Value A value with its type specified with the XML Schema ‘type’
attribute. The type may be any of the simple or array types defined
in Section 2.7.

Timestamp As in OPC COM, the Timestamp is the most accurate time the
server is able to associate with a value. The Timestamp should
indicate the time that the value and quality was obtained by the
device (if this is available) or the time the server updated or
validated the value and quality in its CACHE.

If the Value is an array, then there is a single Timestamp that will
be associated with all array elements. The server is responsible for
determining/returning the most accurate timestamp.

See discussion in Fundamental Concepts section for more detail on
Timestamps.

Timestamps are only returned if ReturnItemTime = True.

Clients may specify a Timestamp when performing a Write.

Quality Equivalent to the data contained within the DA Quality Word.

QualityField A qualified name matching the OPC Quality Status and Substatus
(i.e., the Quality BitField, and the Substatus BitField of the DA
Quality Word).

A “Good” quality may result in no QualityField attribute being
returned. If “Bad”, or “Uncertain” then a QualityField attribute will
be returned.

The server will NOT return a value if the quality is Bad, except as
described in table below.

The server is required to return a “reasonable” value when the
quality is uncertain.

Clients may specify a QualityField when performing a Write.

LimitField A qualified name matching the OPC Limit Bit Field.

A LimitField attribute will be returned for any Limit Status other
than “none” irrespective of the value of QualityField.

Clients may specify a LimitField when performing a Write.

VendorField A numeric value matching the OPC Vendor Bit Field.

VendorField attribute may be returned at Vendor’s discretion.

Clients may specify a VendorField when performing a Write.

Comments:

Some of the returned items are optional – See RequestOptions for further detail.

The following table summarizes the interactions of quality, and the value related items which are returned:

36

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Item Good Bad Uncertain

Value “Good” value If available return “Last
Known Value”
else NO value returned

“Reasonable” value

QualityField Not returned Variation of Bad

If “Last Known Value”
is available QualityField
=
“badLastKnownValue”

Variation of Uncertain

VendorField May be returned at
Vendor’s discretion

May be returned at
Vendor’s discretion

May be returned at
Vendor’s discretion

LimitField Will be returned for any
Limit Status other than
“none”

Will be returned for any
Limit Status other than
“none”

Will be returned for
any Limit Status other
than “none”

Timestamp If ReturnItemTime, the
time corresponding to
the returned value

If ReturnItemTime, and
“Last Known Value” is
available, the time
corresponding to the
returned value

If ReturnItemTime, the
time corresponding to
the returned value

37

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.1.6 RequestOptions

Description

RequestOptions is the container of information that represents the options available to clients in most
of the XML-DA requests.
<s:complexType name="RequestOptions">
 <s:attribute default="true" name="ReturnErrorText" type="s:boolean" />
 <s:attribute default="false" name="ReturnDiagnosticInfo" type="s:boolean"
/>
 <s:attribute default="false" name="ReturnItemTime" type="s:boolean" />
 <s:attribute default="false" name="ReturnItemPath" type="s:boolean" />
 <s:attribute default="false" name="ReturnItemName" type="s:boolean" />
 <s:attribute name="RequestDeadline pe="s:dateTime" use="optional" /> " ty
 <s:attribute name="ClientRequestHandle" type="s:string" />
 <s:attribute name="LocaleID" type="s:string" />
</s:complexType>

Tag Name Description

ReturnErrorText If TRUE (default) the server will return verbose error description.
See also LocaleID, below and the Error type.

ReturnDiagnosticInfo If TRUE the server will return verbose server specific diagnostic
information to provide additional information relative to item
specific errors. The server is required to return specific diagnostic
information or a blank string if diagnostic information is not
available.

ReturnItemTime Indicates whether to return the timestamp for each item.
Default is False which means item time will not be returned.

Item values and quality are not client options and are returned
according to the value’s quality – see description in ItemValue
section.

ReturnItemName Indicates whether to return ItemName for each item.
Default is False which means ItemName will not be returned.

If the value is true, the passed ItemName must be also returned if
it was unkown or invalid.

ReturnItemPath Indicates whether to return ItemPath for each item.
Default is False which means ItemPath will not be returned.

If the value is true, the passed ItemPath must be also returned if it
was unkown or invalid

RequestDeadline Indicates the specific absolute time (in UTC) that the client wants
to wait for the Server to process a response by either returning
whatever data it might have or confirm that there was some error
condition which prevents a successful response. Data for items,
which is not available by that time, should be returned as errors. If
the RequestDeadline is earlier than the current time of the server
(RcvTime) then the whole request fails.

If (RequestDeadline - RcvTime) <= 0
Then E TIMEDOUT fault

38

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

If (RequestDeadline - current time) <= 0
 Then E_TIMEDOUT errors for unprocessed items

The request may timeout independently of RequestDeadline
based on other system parameters. In the case of the system based
timeout, the whole request will fail. The client can thus expect
that the request will come to some closure based on the lesser of
the RequestDeadline and the system based timeout.

If omitted then the server will use some server specific period to
process the response.

The expectation is that the client and server are reasonably time
synched which is necessary for this service to work properly. The
client may gain some insight in calculating this attribute by
reviewing RcvTime, and ReplyTime in the ReplyBase for
responses.

The server specific timeout might be determined by something
equivalent to a TCP/IP timeout or perhaps by the time required to
make a connection to a remote RTU.

It is expected that the server specific maximum time will generally
be no more than a minute or two although this depends on the
details of the underlying system.

ClientRequestHandle An optional value supplied by the client that will be returned with
the response. In larger and more complex systems it helps the
client to associate the replies with the proper requests.

LocaleID An optional value supplied by the client that specifies the
language for certain return data (see Section 2.4).

Comments:

39

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.1.7 ServerState

Description

ServerState is the container of information that represents the possible states of an OPC-XML-DA
server. The meaning of these states is the same as in the OPC Data Access Custom Interface Specification
Version 3.0.

<s:simpleType name="serverState">
 <s:restriction base="s:string">
 <s:enumeration value="running" />
 <s:enumeration value="failed" />
 <s:enumeration value="noConfig" />
 <s:enumeration value="suspended" />
 <s:enumeration value="test" />
 <s:enumeration value="commFault" />
 </s:restriction>
</s:simpleType>

3.1.8 ReplyBase

Description

ReplyBase is the container of information that represents the basic information for most responses.

<s:complexType name="ReplyBase">
 <s:attribute name="RcvTime" type="s:dateTime" use="required" />
 <s:attribute name="ReplyTime" type="s:dateTime" use="required" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 <s:attribute name="RevisedLocaleID" type="s:string" />
 <s:attribute name="ServerState" type="s0:serverState" use="required" />
</s:complexType>

Tag Name Description

RcvTime The time that the server received the request.

Required attribute

ReplyTime The time that the server returns the Response.

Required attribute.

ClientRequestHandle If supplied by the client in the request then this value is echoed
back in the response.

RevisedLocaleID If the client requested a LocaleID not supported by the server then
the server will return its default locale id in this attribute.

It is at the server’s discretion as to whether the LocaleID is returned
when the server is able to support the requested LocaleID.

ServerState This attribute is used to communicate the current state and will
always be returned.

Required attribute

Comments:

40

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.1.9 OPCError

Description

OPCError is the container of information that represents the definition of OPC-XML-DA Errors.

<s:complexType name="OPCError">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Text" type="s:string" />
 </s:sequence>
 <s:attribute name="ID" type="s:QName" use="required" />
</s:complexType>

Tag Name Description

ID Contains the qualified name (ResultID) of the OPCError.

Text The Textual representation of the Error. The encoding of the string is
based on LocaleID. For each OPCError there will be a Text element.

OPC-XML-DA defines a series of standard result codes that have specific applications in data access
operations. These codes are always qualified with the namespace
http://opcfoundation.org/webservices/XMLDA/1.0/. The standard result codes are as follows.

Success codes

S_CLAMP The value written was accepted but the output was
clamped.

S_DATAQUEUEOVERFLOW Not every detected change has been returned since the
server's buffer reached its limit and had to purge out the
oldest data.

S_UNSUPPORTEDRATE The server does not support the requested rate but will
use the closest available rate.

Error codes:

E_ACCESS_DENIED The server denies access (read and/or write) to the
specified item. This error is typically caused by Web
Service security (e.g. globally disabled write
capabilities).

E_BUSY The server is currenly processing another polled refresh
for one or more of the subscriptions.

E_FAIL Unspecified error.

E_INVALIDCONTINUATIONPOINT The continuation point is not valid.

E_INVALIDFILTER The filter string is not valid.

E_INVALIDHOLDTIME The hold time is too long (determined by server).

E_INVALIDITEMNAME The item name does not conform the server’s syntax.

E_INVALIDITEMPATH The item path does not conform the server’s syntax.

E_INVALIDPID The property id is not valid for the item.

41

http://opcfoundation.org/webservices/OPCDA/

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

E_NOSUBSCRIPTION An invalid subscription handle was passed to the request.

E_NOTSUPPORTED The server does not support writing to the quality and/or
timestamp.

E_OUTOFMEMORY Ran out of memory.

E_RANGE The value was out of range.

E_BADTYPE The passed data type cannot be accepted for this item.

E_READONLY The value is read only and may not be written to.

E_SERVERSTATE The operation could not complete due to an abnormal
server state.

E_TIMEDOUT The operation took too long to complete (determined by
server).

E_UNKNOWNITEMNAME The item name is no longer available in the server
address space.

E_UNKNOWNITEMPATH The item path is no longer available in the server address
space.

E_WRITEONLY The value is write-only and may not be read from or
returned as part of a write response.

Vendors may choose to create their own custom result codes, but these must be qualified with a
vendor-specific namespace (i.e. http://company.com/etc). Please refer to the W3C XML 1.0
specification for more information about namespaces and qualified names. Note that vendors are still
required to use the standard codes where specifically mentioned. In addition, the vendor specific codes
should also follow the convention where critical errors are prefixed with ‘E_’ and none critical errors
are prefixed with ‘S_’.

Comments:

The OPCError elements will not be returned if the client is not interested in textual representations of
the error (RequestOptions.ReturnErrorText = FALSE).

The server, if requested by the client, will return additional diagnostic information.

3.1.10 ItemProperty

Description

ItemProperty is the container of information that represents the properties that are accessed via the
Browse and GetProperties services.
<s:complexType name="ItemProperty">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Value" />
 </s:sequence>
 <s:attribute name="Name" type="s:QName" use="required" />
 <s:attribute name="Description" type="s:string" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ResultID" type="s:QName" />
</s:complexType>

42

http://company.com/etc

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Tag Name Description

Name Contains the Qualified name of the Property.

Description Contains the Description of the Property.

ItemPath If this Item Property can be read, written or subscribed to then ItemPath
and ItemName together uniquely identify this property in the server’s
browse space. If ItemPath is empty, then ItemName by itself is a fully
qualified name that uniquely identifies this element. If ItemPath and
ItemName are both blank or missing, then this Item Property cannot be
read, written or subscribed to..

See the corresponding section in the OPC DA Custom Specification which
references IOPCItemProperties::LookupItemIDs().

ItemName See ItemPath.

Value The current value of the property

ResultID If an error or a non-critical exception (minor problem) occurred this ID
will contain a qualified name. If the server also returns verbose error
messages the respective OPCError elements will be located elsewhere in
the message. This allows multiple instances of a Result ID to map to the
same verbose OPC Error.

See section 2.6 for more details about Resultcodes.

For pre-defined ResultIds see section 3.1.9 on OPCError.

Comments:

ItemProperty is analogous to the data returned from IOPCItemProperties::GetItemProperties() in
the OPC DA Custom Specification. That specification uses DWORD IDs to identify a property versus
the use of qualified names above. Vendors may choose to create their own custom item properties, but
these must be qualified with a vendor-specific namespace (i.e. "http://company.com/etc"). Please refer
to the W3C XML 1.0 specification for more information about namespaces and qualified names. The
IDs used in the DA specification map to the qualified names as follows:

43

http://company.com/etc

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

ID OPC-XML-DA

Qualified Name
STANDARD DESCRIPTION DATA TYPE

1 dataType "Item Canonical DataType" QName

2 value "Item Value" anyType

3 quality "Item Quality" OPCQuality

4 timestamp "Item Timestamp" dateTime

5 accessRights "Item Access Rights" string – one of the
following valid
values must be used:

"unknown"
"readable"
"writable"
"readWritable"

6 scanRate "Server Scan Rate"

This represents the fastest rate (in
milliseconds) at which the server could
obtain data from the underlying data
source. The nature of this source is not
defined but is typically a DCS system, a
SCADA system, a PLC via a COMM port
or network, a Device Network, etc. This
value generally represents the ‘best case’
or fastest RequestedSamplingRate which
could be used if this item were subscribed
to.

The accuracy of this value (the ability of
the server to attain ‘best case’
performance) may be greatly affected by
system load and other factors.

float

7 euType “Item EU Type”

string – one of the
following valid
values must be used:

"noEnum"
"analog"
"enumerated"

8 euInfo “Item EUInfo”

If item 7 “Item EU Type” is “Enumerated”
then EUInfo will contain an array of
strings which correspond to sequential
numeric values (0, 1, 2, etc.)

(Example:
<string>OPEN</string>
<string>CLOSE</string>
<string>IN TRANSIT</string> etc.)

ArrayOfString

44

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

9-99 Reserved for future OPC use

100 engineeringUnits "EU Units"

e.g. “DEGC” or “GALLONS”

string

101 description "Item Description"

e.g. “Evaporator 6 Coolant Temp”

string

102 highEU "High EU"

Present only for ‘analog’ data. This
represents the highest value likely to be
obtained in normal operation and is
intended for such use as automatically
scaling a bargraph display.

e.g. 1400.0

double

103 lowEU "Low EU"

Present only for ‘analog’ data. This
represents the lowest value likely to be
obtained in normal operation and is
intended for such use as automatically
scaling a bargraph display.

e.g. -200.0

double

104 highIR "High Instrument Range"

Present only for ‘analog’ data. This
represents the highest value that can be
returned by the instrument.

e.g. 9999.9

double

105 lowIR "Low Instrument Range"

Present only for ‘analog’ data. This
represents the lowest value that can be
returned by the instrument.

e.g. -9999.9

double

106 closeLabel "Contact Close Label"

Present only for ‘discrete' data. This
represents a string to be associated with
this contact when it is in the closed (non-
zero) state

e.g. "RUN", "CLOSE", "ENABLE",
"SAFE" ,etc.

string

107 openLabel "Contact Open Label"

Present only for ‘discrete' data. This
represents a string to be associated with
this contact when it is in the open (zero)
state

string

45

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

e.g. "STOP", "OPEN", "DISABLE",
"UNSAFE" ,etc.

108 timeZone "Item Timezone"

The time difference (in minutes) between
the item’s UTC Timestamp and the local
time in which the item value was obtained.
See the OPCGroup TimeBias property.
Also see the WIN32
TIME_ZONE_INFORMATION structure.

unsignedInt

109 minimumValue "Minimum Value"

The smallest positive value that can be
stored in the item. See Section 2.7.4 for a
complete explanation.

Same as the data type
for the item.

110 maximumValue "Maximum Value"

The largest positive value that can be
stored in the item. See Section 2.7.4 for a
complete explanation.

Same as the data type
for the item.

111 valuePrecision "Value Precision"

The maximum precision that can be stored
in the item. See Section 2.7.4 for a
complete explanation.

double

112-199 Reserved for future OPC use. Additional
IDs may be added without impacting the
SupportedInterfaceVersions.

 IDs 300 to 399 are reserved for use by
OPC Alarms and Events.

See the OPC Alarm and Events
specification for additional information.

46

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.2 GetStatus

3.2.1 GetStatus

Description

GetStatus is the container of information that represents the GetStatus request.

The purpose of the GetStatus service is:

1. It provides a common mechanism for checking the status of the server - whether it is operational
or in need of maintenance.

2. It provides a common mechanism for obtaining vendor-specific information about the server that
is not available through the other OPC services (version number, etc).

3. Provides insight for clients as to the relative time synchronization between the client and server.
As an example, this information is useful for Read requests.

<s:element name="GetStatus">
 <s:complexType>
 <s:attribute name="LocaleID" type="s:string" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 </s:complexType>
</s:element>

Tag Name Description

LocaleID An optional value supplied by the client that specifies the language
for textual status data.

ClientRequestHandle An optional value supplied by the client that will be returned with
the response. In larger and more complex systems it helps the client
to associate the replies with the proper requests.

Comments:

Example
<soap:Body>
 <GetStatus
 LocaleID="de-AT"
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/"
 />
</soap:Body>

47

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.2.2 GetStatusResponse

Description

GetStatusResponse is the container of information that represents the GetStatus response. The
server is required to return valid values for all of the items as described below.

<s:element name="GetStatusResponse">
 <s:complexType>
 <s:sequence>
 <s:element
 minOccurs="0" maxOccurs="1"
 name="GetStatusResult"
 type="s0:ReplyBase"
 />
 <s:element minOccurs="0" maxOccurs="1" name="Status"
type="s0:ServerStatus" />
 </s:sequence>
 </s:complexType>
</s:element>

<s:complexType name="ServerStatus">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="StatusInfo" type="s:string"
/>
 <s:element minOccurs="0" maxOccurs="1" name="VendorInfo" type="s:string"
/>
 <s:element
 minOcc "unbounded" urs="0" maxOccurs=
 name="SupportedLocaleIDs"
 type="s:string"
 />
 <s:element
 minOcc ed" urs="0" maxOccurs="unbound
 name="SupportedInterfaceVersions"
 type="s0:interfaceVersion"
 />
 </s:sequence>
 <s:attribute name="StartTime" type="s:dateTime" use="required" />
 <s:attribute name="ProductVersion" type="s:string" />
</s:complexType>

<s:simpleType name="interfaceVersion">
 <s:restriction base="s:string">
 <s:enumeration value="XML_DA_Version_1_0" />
 </s:restriction>
</s:simpleType>

Tag Name Description

GetStatusResult For a detailed description of ReplyBase see the separate
section, above.

Required Element.

StatusInfo String providing additional information about the server
state.
This may be locale-specific.

48

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

VendorInfo Vendor specific string providing additional information

about the server. It is recommended that this mention the
name of the company and the type of device(s) supported.
This string may be locale-specific.

SupportedLocaleIDs 1 or more Locale IDs supported by the server.
Required element.

SupportedInterfaceVersions Array of Strings, containing the versions of the XML-DA
Specification that this server supports. (Required to
provide at least 1) The text associated with this
Specification is: "XML_DA_Version_1_0"

StartTime Time (UTC) the server was started. This is constant for
the server instance and is not reset when the server
changes states. Each instance of a server should keep the
time when the process started.

ProductVersion Version String, containing “Major”, “Minor” and “Build”
number.

Comments:

Abnormal Result Codes:

Faults:

The server should use the following fault codes. Additional faults may occur due to protocol or parsing
errors.

E_FAIL See description in Section 3.1.9.

E_OUTOFMEMORY See description in Section 3.1.9.

Example
<soap:Body>
 <GetStatusResponse
xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <GetStatusResult
 RcvTime="2003-05-26T20:17:42.4781250-07:00"
 ReplyTime="2003-05-26T20:17:42.5781250-07:00"
 RevisedLocaleID="de"
 ServerState="running"
 />
 <Status
 StartTime="2003-05-26T20:16:45.0937500-07:00"
 ProductVersion="1.00.1.00"
 >
 <VendorInfo>OPC XML Data Access 1.00 Sample Server</VendorInfo>
 <SupportedLocaleIDs>en</SupportedLocaleIDs>
 <SupportedLocaleIDs>en-US</SupportedLocaleIDs>
 <SupportedLocaleIDs>de</SupportedLocaleIDs>

<SupportedInterfaceVersions>XML_DA_Version_1_0</SupportedInterfaceVersions>
 </Status>
 </GetStatusResponse>
</soap:Body>

49

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.3 Read

3.3.1 Read

Description

Read is the container of information that represents the Read request.

This service provides the ability to read the value and quality for one or more items. Other attributes,
such as timestamp, can optionally be requested for items. Other information can also be optionally
requested such as the inclusion of verbose error messages in the response.

The items to be read are contained in an Item List. The client specifies request specific attributes that
allow the server to more appropriately respond to the client’s data needs. Certain of these attributes are
“hierarchical” in nature and are described elsewhere in the document.

The Read request runs to completion before the response is returned. The server obtains the data for
an item, or it determines that the data cannot be read. It places either the data or an error code for each
requested item into the ReadResponse, according to the structure and order of the Items in the request.

The client may request for the server to return the subset of verbose error messages that correspond to
the unique error codes encountered in the list of values. The verbose error messages follow the list of
values/error codes.

The data can be read from a server’s cache, in which case, it should be accurate to within the optional
MaxAge attribute specified for the item in the request. Alternatively, the server may be front-ending a
device, and certain data requests will cause a read from the underlying physical device. The cache
values that met the MaxAge attribute will not have to be reevaluated after the device read is performed.
The exact implementation of cache and device reads is not defined by this specification.

In the WSDL extract below, the attribute minOccurs is set to 0 for Items (in ReadRequestItemList) to
be compatible with code generation tools. However, at least one Item is required in the
ReadRequestItemList, else an E_FAIL will be returned.
<s:element name="Read">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
 name="Options"
 type="s0:RequestOptions" />
 <s:eleme curs="0" maxOccurs="1" nt minOc
 name="ItemList"
 type="s0:ReadRequestItemList" />
 </s:sequence>
 </s:complexType>
</s:element>

<s:complexType name="ReadRequestItemList">
 <s:sequence>
 <s:eleme nOccurs="0" maxOccurs="unbounded" nt mi
 name="Items"
 type="s0:ReadRequestItem" />
 </s:sequence>
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType" type="s:QName"/>
 <s:attribute name="MaxAge" type="s:int" />
</s:complexType>

<s:complexType name="ReadRequestItem">

50

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType" type="s:QName" />
 <s:attribute name="ItemName s:string" /> " type="
 <s:attribute name="ClientItemHandle" type="s:string" />
 <s:attribute name="MaxAge" type="s:int" />
</s:complexType>

Tag Name Description

Options For a detailed description of these options see the separate section
(RequestOptions), above.

ItemList The container for the individual Items.

Items A container tag of the item information that follows. It is expected that
there are one or more Items per ItemList.

For a detailed description of RequestItem see the separate section, above.

Hierarchical Parameters:
The following parameters are hierarchical parameter, i.e., it can occur either on the list or on the
item level. A value specified for an item will override the value on list level.

ItemPath Same as attribute described in Section 3.1.3.
ReqType Same as attribute described in Section 3.1.3.

MaxAge Indicates the requested freshness of the data in number of milliseconds.
The data should be no older than this value. If omitted or if the value is 0
at all levels of the hierarchy then the server should return the most
accurate data available (which is analogous to a “DEVICE” read in the
COM server – reference the corresponding section of the OPC DA
Specification to get further clarification on this concept.). The server must
not return an error or bad quality if the most accurate data available has an
older time stamp than MaxAge.

Comments:

The Server will maintain the order of Items within the ItemList.

Read requests are expected to be one-shot operations, and there will not be any assumed relationship
(contract) between client and server. Read requests are also synchronous in nature, i.e., the server will
return all requested values or errors for those values which it cannot retrieve.

If data is needed on a regular basis, clients should use the Subscription services.

Example
<soap:Body>
 <Read xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <Options
 ReturnErrorText="false"
 ReturnItemTime="true"
 ReturnItemName="true"
 LocaleID="en" />
 <ItemList>
 <Items ItemName="Simple Types/UInt" />
 <Items ItemName="Simple Types/Int" />
 <Items ItemName="Simple Types/Float" />
 </ItemList>
 </Read>

51

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

</soap:Body>

52

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.3.2 ReadResponse

Description

ReadResponse is the container of information that represents the Read response.

In the WSDL extract below, the attribute minOccurs is set to 0 for Items (in ReplyItemList) to be
compatible with code generation tools. However, the number of Items must match the corresponding
number in the request.
<s:element name="ReadResponse">
 <s:complexType>
 <s:sequence>
 <s:eleme rs="0" maxOccurs="1" nt minOccu
 name="ReadResult"
 type="s0:ReplyBase" />
 <s:eleme urs="0" maxOccurs="1" nt minOcc
 name="RItemList"
 type="s0:ReplyItemList" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="Errors"
 type="s0:OPCError" />
 </s:sequence>
 </s:complexType>
</s:element>

<s:complexType name="ReplyItemList">
 <s:sequence>
 <s:eleme nOccurs="0" maxOccurs="unbounded" nt mi
 name="Items"
 type="s0:ItemValue" />
 </s:sequence>
 <s:attribute name="Reserved" type="s:string" />
</s:complexType>

Tag Name Description

ReadResult For a detailed description of ReplyBase see the separate section, above.

Required Element.

RItemList A container for the individual Item elements.

Note that the “Reserved” attribute in the ReplyItemList type exists in order
to prevent WSDL based code generation tools from representing the
returned list as an array of ItemValues.

Items A container of the item elements and their value information. It is
expected that there are one or more Item elements per RItemList.

The ReadResponse will maintain the Item order in the Read request.

If an item is write-only the server will return E_WRITEONLY in the
response for this item. The response will provide no value element for the
affected item.

Errors An array of OPCError elements that is appropriate for this Response.
Errors are only present if Items contain result codes.

Comments:

53

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

The Server will maintain the order of Items within RItemList.

Abnormal Result Codes:

One of the following codes can be part of any of the values.

E_ACCESS_DENIED See description in Section 3.1.9.

E_BADTYPE See description in Section 3.1.9.

E_INVALIDITEMNAME See description in Section 3.1.9.

E_INVALIDITEMPATH See description in Section 3.1.9.

E_RANGE See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9

E_UNKNOWNITEMNAME See description in Section 3.1.9.

E_UNKNOWNITEMPATH See description in Section 3.1.9.

E_WRITEONLY See description in Section 3.1.9.

E_XXX, S_XXX Vendor-specific result code.

Faults:

The server should use the following fault codes. Additional faults may occur due to protocol or parsing
errors.

E_FAIL See description in Section 3.1.9.

E_OUTOFMEMORY See description in Section 3.1.9.

E_SERVERSTATE See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9.

Example
<soap:Body>
 <ReadResponse xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <ReadResult
 RcvTime="2003-05-27T00:15:36.6400000-07:00"
 ReplyTime="2003-05-27T00:15:36.7500000-07:00"
 ServerState="running"
 />
 <RItemList>
 <Items
 ItemName="Simple Types/UInt"
 Timestamp="2003-05-27T00:15:36.7343750-07:00">
 <Value xsi:type="xsd:unsignedInt">4294967295</Value>
 </Items>
 <Items
 ItemName="Simple Types/Int"
 Timestamp="2003-05-27T00:15:36.7343750-07:00">
 <Value xsi:type="xsd:int">2147483647</Value>
 </Items>
 <Items
 ItemName="Simple Types/Float"
 Timestamp="2003-05-27T00:15:36.7343750-07:00">
 <Value xsi:type="xsd:float">3.402823E+38</Value>

54

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

 </Items>
 </RItemList>
 </ReadResponse>
</soap:Body>

55

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.4 Write

3.4.1 Write

Description

Write is the container of information that represents the Write request.

This service writes the value for one or more items. Optionally, the Time, QualityField, LimitField,
VendorField attributes of the value also can be written.

The client may tailor the information to be returned in the corresponding WriteResponse and as such
may optionally request the inclusion of verbose error messages in the response.

The values to be written are contained in an ItemList. The client specifies request specific attributes
which allow the server to respond to the client’s data write needs. Certain of these attributes are
“hierarchical” in nature and described elsewhere in the document. The client also may request a
subsequent read of the items, allowing it to obtain the results of the writes.

The service runs to completion before the response is returned. The server writes the data for each
item, or it determines that the data cannot be written.

If requested, after all writes complete, the server performs a read of the items. The server places either
the data or an error code (write or read) for each requested item into the WriteResponse, matching the
structure and order of the request.

The server and the scope of the data that it represents will determine the data destination, i.e., cache, or
underlying device. The exact implementation of a cache or device is not defined by this specification.

In the WSDL extract below, the attribute minOccurs is set to 0 for Items (in WriteRequestItemList) to
be compatible with code generation tools. However, at least one Item is required in the ItemList, else
an E_FAIL will be returned.

<s:element name="Write">
 <s:complexType>
 <s:sequence>
 <s:eleme ccurs="0" maxOccurs="1" nt minO
 name="Options"
 type="s0:RequestOptions" />
 <s:element minOccurs="0" maxOccurs="1"
 name="ItemList"
 type="s0:WriteRequestItemList" />
 </s:sequence>
 <s:attribute name="ReturnValuesOnReply" type="s:boolean" use="required"
/>
 </s:complexType>
</s:element>

<s:complexType name="WriteRequestItemList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="Items"
 type="s0:ItemValue" />
 </s:sequence>
 <s:attribute name="ItemPath" type="s:string" />
</s:complexType>

Tag Name Description

56

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Options For a detailed description of these options see the separate section

(RequestOptions), above.

ReturnValuesOnReply Indicates whether to return the Value for each item (i.e., the Value of
the ItemValue structure). The returned value is the value “accepted”
by the server, or device. If a Value is returned, then the associated
QualityField will also be returned, and as appropriate the LimitField,
and VendorField.

The returned value is equivalent to the value which would be
returned by the server to the client if the client had performed a read
request directly after the write request.

Values are never returned if the Write fails.

If an item is write-only the server will return E_WRITEONLY in the
response for this item. The response will provide no value element
for the affected item.

ItemList The container for the individual Items.

Items A container of the item information that follows. It is expected that
there are one or more Items in the ItemList.

The typical information to be transported is the ItemName, and a
Value. The other tags are optional and are valid only if the Server
supports the ability to write other than value.

Item.Value One or more Value(s) are always supplied.

The Write request allows the client to specify one or more of the
following attributes of a value (Time, QualityField, LimitField, and
VendorField). The servers must either support writing none of these
qualifying attributes, or they must support writing all on a per item
basis. Writes of only Value, or Value/Quality/Time/Bits are atomic
writes. Either they all are written, or none are written.

Examples of clients which might leverage this capability are
simulation clients, or advanced control type clients. In both cases
the client is generating the Item Value, and would benefit from the
ability to write one or more of: Time, QualityField, LimitField, or
VendorField.

If the client specifies a subset of the attributes, then the server will
only attempt to write the supplied subset. If a client attempts to
write any value, quality, timestamp combination and the server does
not support the requested combination (which could be a single
quantity such as just timestamp), then the server will not perform
any write and will return the E_NOTSUPPORTED error code.

In the case of a quality other than Good (and if the server supports
the writing of QualityField), the value should be some client specific
default item value (typically 0 or a Null string), and will be ignored
by the server.

Hierarchical Parameter:
The following parameters are hierarchical parameter, i.e., it can occur either on the list or on the
item level. A value specified for an item will override the value on list level.

57

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

ItemPath Same as attribute described in Section 3.1.3.

Comments:

The Server will maintain the order of Items within the ItemList.

The Server should maintain the order of the write request as much as possible in performing the actual
writes, but the client should not count on any expectation of that order. The server may reorder the
actual writes based on server, and device constraints such as performance, device availability, etc.

The server will attempt to convert the client’s supplied value to the server’s canonical representation of
the data else return an E_BADTYPE error.

A server must not allow conversions from a string to any other data type. This restriction is necessary
because different representations of the same value in different locales can be ambiguous and lead to
unexpected behavior. For example, the decimal number 1.234 is represented in a German locale as the
string “1,234”. The server must return an E_BADTYPE error if a client attempts to write a string value
to any item with a canonical data type that is not a string.

Example:
<soap:Body>
 <Write xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <Options
 ReturnErrorText="false"
 ReturnItemName="true"
 LocaleID="en"
 />
 <ItemList>
 <Items ItemName="Simple Types/UInt">
 <Value xsi:type="xsd:unsignedInt">4294967295</Value>
 </Items>
 <Items ItemName="Simple Types/Int">
 <Value xsi:type="xsd:int">2147483647</Value>
 </Items>
 <Items ItemName="Simple Types/Float">
 <Value xsi:type="xsd:float">3.402823E+38</Value>
 </Items>
 </ItemList>
 </Write>
</soap:Body>

58

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.4.2 WriteResponse

Description

Write is the container of information that represents the Write response.

In the WSDL extract below, the attribute minOccurs is set to 0 for Items (in ReplyItemList) to be
compatible with code generation tools. However, the number of Items must match the corresponding
request.
<s:element name="WriteResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
 name="WriteResult"
 type="s0:ReplyBase" />
 <s:eleme urs="0" maxOccurs="1" nt minOcc
 name="RItemList"
 type="s0:ReplyItemList" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="Errors"
 type="s0:OPCError" />
 </s:sequence>
 </s:complexType>
</s:element>

Tag Name Description

WriteResult For a detailed description of ReplyBase see the separate section, above.

Required Element.

RItemList The container for the individual Item elements

Items A container of the item information that follows. It is expected that there
are one or more Item elements in the list.

The WriteResponse will maintain the order of Items in the Write request.

The data type of the returned value(s) must match the data type of the
value(s) being supplied in the Write request.

The Value element is only present if ReturnValuesOnReply was True.
Timestamp is only present if ReturnItemTime was True.

Errors An array of OPCError elements that is appropriate for this Response.
Error elements are only present if Item elements contain result codes.

Comments:

The Server will maintain the order of Items within the RItemList.

Abnormal Result Codes:

One of the following codes can be part of any of the values.

E_ACCESS_DENIED See description in Section 3.1.9.

E_BADTYPE See description in Section 3.1.9.

E_INVALIDITEMID See description in Section 3.1.9.

59

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

E_INVALIDITEMNAME See description in Section 3.1.9.

E_INVALIDITEMPATH See description in Section 3.1.9.

E_NOTSUPPORTED See description in Section 3.1.9.

E_RANGE See description in Section 3.1.9.

E_READONLY See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9

E_UNKNOWNITEMNAME See description in Section 3.1.9.

E_UNKNOWNITEMPATH See description in Section 3.1.9.

E_WRITEONLY See description in Section 3.1.9.

S_CLAMP See description in Section 3.1.9.

E_XXX, S_XXX Vendor-specific result code.

Faults:

The server should use the following fault codes. Additional faults may occur due to protocol or parsing
errors.

E_FAIL See description in Section 3.1.9.

E_OUTOFMEMORY See description in Section 3.1.9.

E_SERVERSTATE See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9.

Example:
<soap:Body>
 <WriteResponse xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <WriteResult
 RcvTime="2003-05-27T05:19:26.3687500-07:00"
 ReplyTime="2003-05-27T05:19:26.4687500-07:00"
 ServerState="running" />
 <RItemList>
 <Items ItemName="Simple Types/UInt" />
 <Items ItemName="Simple Types/Int" />
 <Items ItemName="Simple Types/Float" />
 </RItemList>
 </WriteResponse>
</soap:Body>

60

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.5 Subscribe
For a detailed description of the OPC-XML-DA Subscription mechanism see the section under
Fundamental Concepts.

3.5.1 Subscribe

Description

Subscribe is the container of information that represents the Subscribe request.

In the WSDL extract below, the attribute minOccurs is set to 0 for Items (in
SubscribeRequestItemList) to be compatible with code generation tools. However, at least one Item is
required in the list, else an E_FAIL will be returned.
<s:element name="Subscribe">
 <s:complexType>
 <s:sequence>
 <s:eleme ccurs="0" maxOccurs="1" nt minO
 name="Options"
 type="s0:RequestOptions" />
 <s:element minOccurs="0" maxOccurs="1"
 name="ItemList"
 type="s0:SubscribeRequestItemList" />
 </s:sequence>
 <s:attribute name="ReturnValuesOnReply" type="s:boolean" use="required"
/>
 <s:attribute default=”0” name="SubscriptionPingRate" type="s:int" />
 </s:complexType>
</s:element>

<s:complexType name="SubscribeRequestItemList">
 <s:sequence>
 <s:element
 minOcc 0" maxOccurs="unbounded" urs="
 name="Items"
 type="s0:SubscribeRequestItem" />
 </s:sequence>
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType type="s:QName" /> "
 <s:attribute name="Deadband at" /> " type="s:flo
 <s:attribute name="RequestedSamplingRate" type="s:int" />
 <s:attribute name="EnableBuffering" type="s:boolean" />
</s:complexType>

<s:complexType name="SubscribeRequestItem">
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType" type="s:QName" use="required" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ClientItemHandle" type="s:string" />
 <s:attribute name="Deadband at" /> " type="s:flo
 <s:attribute name="RequestedSamplingRate" type="s:int" />
 <s:attribute name="EnableBuffering" type="s:boolean" />
</s:complexType>

Name Description

Options For a detailed description of these options see the separate

61

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

section (RequestOptions), above.

ReturnValuesOnReply If TRUE the server will return item values which are readily
available for inclusion in the SubscribeResponse. Depending on
when the SubscriptionPolledRefresh is requested, these items
may or may not be updated in the first
SubscriptionPolledRefresh.

If FALSE the server must not deliver any item values in the
SubscribeResponse.

SubscriptionPingRate This is a required attribute.

The SubscriptionPingRate is the requested rate in milliseconds
that the server should reevaluate the existence of the client. If the
client has not had any communication in the specified period,
then the Server is free to clean up all resources associated with
that client for this Subscription.

The server should attempt to honor the client’s request, but it
may reevaluate the existence of the client at a rate faster than the
SubscriptionPingRate based on its own implementation, and
resource constraints. If the SubscriptionPingRate is 0, then the
server will use its own algorithm to reevaluate the existence of
the client.

It is highly recommended that clients always specify a non-zero
ping rate since specifying zero will allow the server to choose a
ping rate that the client will not have knowledge of and may be
inappropriate.

ItemList The container tag for the individual Items.

Items A container tag of the item information. It is expected that there
are one or more Item elements in the list.

Hierarchical Parameters:
The following parameters are hierarchical parameters, i.e., they can occur either on the list or on the
item level. A value specified for an item will override the value on list level.

Deadband Specifies the percentage of full engineering unit range of an
item’s value that must change prior to being returned in a
SubscriptionPolledRefresh response.

The deadband value shall be in the range 0-100 percent and only
applies to analog (integer or float) types. The deadband will also
apply to array types. The entire array is returned if any array
element exceeds the deadband threshold.

Server default is 0.

See the OPC DA Custom Specification for further detail.

RequestedSamplingRate The client specifies the rate in milliseconds at which the server
should check for value changes.

If no item-specific sampling rate is specified, sampling will be
based on the rate of the item list.

See the section on Data Management Optimization in this

62

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

document and OPC DA Custom Specification for further detail.

EnableBuffering If True, the client is requesting that the server use the
RequestedSamplingRate to check for value changes and save all
changes in a buffer for return to the client at the next
SubscriptionPolledRefresh request.

See the section on Data Management Optimization in this
document and OPC DA Custom Specification for further detail.

Comments:

The Server will maintain the order of Items within the list in the Response.

Responses to subscribe or poll requests usually return only a subset of all subscribed items. To be able
to identify them the client has to assign unique values to the handles of items (ClientItemHandle).

Example:
<soap:Body>
 <Subscribe
 ReturnValuesOnReply="true"
 SubscriptionPingRate="10000"
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/"
 >
 <Options
 ReturnErrorText="false"
 ReturnItemTime="true"
 ReturnItemName="true"
 LocaleID="en"
 />
 <ItemList RequestedSamplingRate="1000">
 <Items
 ItemName="Analog Types/Double"
 ClientItemHandle="e035d707-e27a-4b06-b103-fea125ce5ca4" />
 <Items
 ItemName="Analog Types/Int"
 ClientItemHandle="fdce6f30-b8d4-4eeb-becf-6deeacdc7f36" />
 </ItemList>
 </Subscribe>
</soap:Body>

63

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.5.2 SubscribeResponse

Description

SubscribeResponse is the container of information that represents the Subscribe response.

In the WSDL extract below, the attribute minOccurs is set to 0 for Items (in SubscribeReplyItemList)
to be compatible with code generation tools. See text below for the scenarios on when and how these
are included in the response.
<s:element name="SubscribeResponse">
 <s:complexType>
 <s:sequence>
 <s:eleme " maxOccurs="1" nt minOccurs="0
 name="SubscribeResult"
 type="s0:ReplyBase" />
 <s:eleme urs="0" maxOccurs="1" nt minOcc
 name="RItemList"
 type="s0:SubscribeReplyItemList" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="Errors"
 type="s0:OPCError" />
 </s:sequence>
 <s:attribute name="ServerSubHandle" type="s:string" />
 </s:complexType>
</s:element>

<s:complexType name="SubscribeReplyItemList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="Items"
 type="s0:SubscribeItemValue" />
 </s:sequence>
 <s:attribute name="RevisedSamplingRate" type="s:int" />
</s:complexType>

<s:complexType name="SubscribeItemValue">
 <s:sequence>
 <s:eleme urs="0" maxOccurs="1" nt minOcc
 name="ItemValue"
 type="s0:ItemValue" />
 </s:sequence>
 <s:attribute name="RevisedSamplingRate" type="s:int" />
</s:complexType>

Name Description

SubscribeResult For a detailed description of ReplyBase see the separate section,
above.

Required Element.

ServerSubHandle Supplied by the Server. It must be used for
SubscriptionPolledRefresh and SubscriptionCancel.

ServerSubHandle is specific to the client making the request.

RevisedSamplingRate The server responds to the client with the actual update rate that it
can support.

64

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Refer to the section on “Data Management Optimization” for
further detail.

RItemList The RItemList structure is the container for Item elements which
carry error or value information. The readily available item values
are sent back via Item elements in RItemList if and only if the
client requested them with “ReturnValuesOnReply” (see
Subscribe). If the server does not have a value for some of the items
at the time of Subscribe, the response will provide no value element
for the affected item.

If error conditions (like invalid item name or unsupported rate) are
detected by the server, then Item Elements will be returned to
communicate the error conditions.

If ReturnValuesOnReply is “false” and no errors are found,
RItemList will be empty. .

Items No additional comments.

RevisedSamplingRate The server responds to the client with the actual sampling rate that
it can support.

Refer to the section on “Data Management Optimization” for
further detail.

Errors An array of OPCError elements that is appropriate for this
Response. OPCError elements are only present if Item elements
contain result codes.

Comments:

SubscribeResponse is the server’s response to the Subscribe request.

A subscription will be created if at least one of the specified items in the passed item list is valid.

If all items are rejected the server will still return Item elements with the error codes. However, no
subscription will be created and an empty string will be returned as “ServerSubHandle”.

Abnormal Result Codes:

One of the following codes can be part of any of the values.

E_ACCESS_DENIED See description in Section 3.1.9.

E_BADTYPE See description in Section 3.1.9.

E_INVALIDITEMNAME See description in Section 3.1.9.

E_INVALIDITEMPATH See description in Section 3.1.9.

E_RANGE See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9.

E_UNKNOWNITEMNAME See description in Section 3.1.9.

E_UNKNOWNITEMPATH See description in Section 3.1.9.

E_WRITEONLY See description in Section 3.1.9.

S_UNSUPPORTEDRATE See description in Section 3.1.9.

65

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

E_XXX, S_XXX Vendor-specific result code.

Faults:

The Server should use the following fault codes. Additional faults may occur due to protocol or
parsing errors.

E_FAIL See description in Section 3.1.9.

E_OUTOFMEMORY See description in Section 3.1.9.

E_SERVERSTATE See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9.

Example:
<soap:Body>
 <SubscribeResponse
 ServerSubHandle="f6f7900f-3962-4965-abba-31607ce5246b"
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <SubscribeResult
 RcvTime="2003-05-27T06:16:23.7750000-07:00"
 ReplyTime="2003-05-27T06:16:23.8750000-07:00"
 RevisedLocaleID=""
 ServerState="running"
 />
 <RItemList>
 <Items>
 <ItemValue
 ItemName="Analog Types/Double"
 ClientItemHandle="e035d707-e27a-4b06-b103-fea125ce5ca4"
 Timestamp="2003-05-27T06:15:56.0625000-07:00"
 >
 <Value xsi:type="xsd:double">3.8060233744357421</Value>
 <Quality />
 </ItemValue>
 </Items>
 <Items>
 <ItemValue
 ItemName="Analog Types/Int"
 ClientItemHandle="fdce6f30-b8d4-4eeb-becf-6deeacdc7f36"
 Timestamp="2003-05-27T06:15:56.0625000-07:00"
 >
 <Value xsi:type="xsd:int">500</Value>
 <Quality />
 </ItemValue>
 </Items>
 </RItemList>
 </SubscribeResponse>
</soap:Body>

66

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.6 SubscriptionPolledRefresh
Refreshes the data items from the last SubscriptionPolledRefresh. For a detailed description of the
OPC-XML-DA Subscription mechanism see the section under Fundamental Concepts.

3.6.1 SubscriptionPolledRefresh

Description

SubscriptionPolledRefresh is the container of information that represents the
SubscriptionPolledRefresh request.

In the WSDL extract below, the attribute minOccurs is set to 0 for ServerSubHandles to be compatible
with code generation tools. However, at least one handle is required.
<s:element name="SubscriptionPolledRefresh">
 <s:complexType>
 <s:sequence>
 <s:eleme ccurs="0" maxOccurs="1" nt minO
 name="Options"
 type="s0:RequestOptions" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="ServerSubHandles"
 type="s:string" />
 </s:sequence>
 <s:attribute name="HoldTime" type="s:dateTime" use="optional" />
 <s:attribute default=”0” name="WaitTime" type="s:int" use="required" />
 <s:attribute default="false" name="ReturnAllItems" type="s:boolean" />
 </s:complexType>
</s:element>

Name Description

Options For a detailed description of these options see the separate section
(RequestOptions) above.

RequestDeadline RequestDeadline is only applicable for the condition of RcvTime being
after the RequestDeadline.

For all other cases, HoldTime and WaitTime control the server behavior
after the initial receipt of the SubscriptionPolledRefresh request.

ServerSubHandles Supplied by the Server in the SubscribeResponse, it is used by the server
to identify the Subscription to be polled.

Multiple ServerSubHandles may be supplied. The server will respond
with the changes in data associated with all supplied ServerSubHandles.

The Server will maintain the order of Items within each polled
subscription list, and for subscriptions in the response (relative to the
ServerSubHandles) – even if some subscriptions or some items in the
subscriptions are missing.

HoldTime Instructs the server to hold off returning from the refresh service call
until the absolute time of the server is equal or greater than this value.

This attribute is optional. If HoldTime is missing, then WaitTime is
ignored.

67

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

WaitTime Instructs the server to wait the specified number of milliseconds after

HoldTime before returning if there are no changes to report. A change in
one of the subscribed items, during this wait period, will result in the
service returning immediately rather than completing the wait time.

ReturnAllItems If set to FALSE, then the server will return only the changed Items
between this SubscriptionPolledRefresh request and the previous request.

If TRUE the server will return all Items specified by the original
Subscribe. The server will wait the HoldTime but then return with all
current values (and any buffered values if EnableBuffering) ignoring the
change status of the items. That is the WaitTime is not considered under
this condition

Comments:

Please note that the server may have to initiate parallel processing of multiple subscriptions in order to
respond to the SubscriptionPolledRefresh request. This behavior is necessitated based on the hold time
and wait time parameters being only applied once.

The first SubscriptionPolledRefresh after the Subscribe must return only Items with changed values if
the Subscribe returned the values (ReturnValuesOnReply = true). The first SubscriptionPolledRefresh
after the Subscribe must return all items if the Subscribe did not return the values
(ReturnValuesOnReply = false).

Example:
<soap:Body>
 <SubscriptionPolledRefresh
 Holdtime="2003-05-27T06:16:31.8750000-07:00"
 Waittime="0"
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/"
 >
 <Options
 ReturnErrorText="false"
 ReturnItemTime="true"
 ReturnItemName="true"
 LocaleID="en"
 />
 <ServerSubHandles>f6f7900f-3962-4965-abba-
31607ce5246b</ServerSubHandles>
 </SubscriptionPolledRefresh>
</soap:Body>

68

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.6.2 SubscriptionPolledRefreshResponse

Description

SubscriptionPolledRefreshResponse is the container of information that represents the
SubscriptionPolledRefresh response.
<s:element name="SubscriptionPolledRefreshResponse">
 <s:complexType>
 <s:sequence>
 <s:eleme nt minOccurs="0" maxOccurs="1"
 name="SubscriptionPolledRefreshResult"
 type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="InvalidServerSubHandles"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="RItemList"
 type="s0:SubscribePolledRefreshReplyItemList" />
 <s:eleme Occurs="0" maxOccurs="unbounded" nt min
 name="Errors"
 type="s0:OPCError" />
 </s:sequence>
 <s:attribute default="false" name="DataBufferOverflow" type="s:boolean"
/>
 </s:complexType>
</s:element>

<s:complexType name="SubscribePolledRefreshReplyItemList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Items"
type="s0:ItemValue" />
 </s:sequence>
 <s:attribute name="SubscriptionHandle" type="s:string" />
</s:complexType>

Name Description

SubscriptionPolledRefreshResult For a detailed description of ReplyBase see the
separate section, above.

Required Element.

InvalidServerSubHandles The server will identify 0 or more
ServerSubHandles that were invalid.

RItemList One RItemList for each subscription of which
items have to be returned.

A RItemList for each polled (and valid)
subscription handle is sent if the client requested
them with “ReturnAllItems”. If “ReturnAllItems”
is FALSE, the server only returns Items which had
changed.

Each RItemList contains the SubscriptionHandle.
Within each list the Items will be returned in a
relative order based on their relative order in the
original Subscribe even if some of the Items are

69

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

missing because the values have not changed. If
there are no values which have changed, the server
will respond with a response without any
RItemList.

If EnableBuffering = False then the server will
send only the latest value that it is maintaining for
those changed items.

If EnableBuffering = True then the server will
send all value changes (Last Changed Value and
any buffered values) for those changed items since
the last SubscriptionPolledRefresh.

DataBufferOverflow This is an indicator that several changes for
individual items occurred, but not all of these
changes could be buffered due to resource
limitations. The server is required to provide at
least the most recent change for each item that
changed since the last update.

The individual items will indicate whether they
were impacted by this resource limitation.

For more details on buffering see the section on
Buffered Data and the OPC DA Custom
Specification for additional details on this topic..

Errors An array of OPCError elements that is appropriate
for this Response. OPCError elements are only
present if Item Elements contain result codes or if
1 or more ServerSubHandles were invalid.

Comments:

There is no implied ordering of the data returned based on the ServerSubHandles.

Abnormal Result Codes:

One of the following codes can be part of any of the values.

E_ACCESS_DENIED See description in Section 3.1.9.

E_BADTYPE See description in Section 3.1.9.

E_RANGE See description in Section 3.1.9.

E_UNKNOWNITEMNAME See description in Section 3.1.9.

E_UNKNOWNITEMPATH See description in Section 3.1.9.

S_DATAQUEUEOVERFLOW See description in Section 3.1.9.

E_XXX, S_XXX Vendor-specific result code.

Faults:

The server should use the following fault codes. Additional faults may occur due to protocol or parsing
errors.

70

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

E_BUSY See description in Section 3.1.9.

E_FAIL See description in Section 3.1.9.

E_INVALIDHOLDTIME See description in Section 3.1.9.

E_OUTOFMEMORY See description in Section 3.1.9.

E_SERVERSTATE See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9.

Example:
<soap:Body>
 <SubscriptionPolledRefreshResponse
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <SubscriptionPolledRefreshResult
 RcvTime="2003-05-27T06:16:31.8218750-07:00"
 ReplyTime="2003-05-27T06:16:31.9218750-07:00"
 RevisedLocaleID=""
 ServerState="running"
 />
 <RitemList SubscriptionHandle="f6f7900f-3962-4965-abba-31607ce5246b">
 <Items
 ItemName="Analog Types/Int"
 ClientItemHandle="fdce6f30-b8d4-4eeb-becf-6deeacdc7f36"
 Timestamp="2003-05-27T06:16:31.6718750-07:00"
 >
 <Value xsi:type="xsd:int">0</Value>
 <Quality />
 </Items>
 <Items
 ItemName="Analog Types/Double"
 ClientItemHandle="e035d707-e27a-4b06-b103-fea125ce5ca4"
 Timestamp="2003-05-27T06:16:31.6718750-07:00"
 >
 <Value xsi:type="xsd:double">14.644660940672427</Value>
 <Quality />
 </Items>
 </RItemList>
 </SubscriptionPolledRefreshResponse>
</soap:Body>

71

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.7 SubscriptionCancel

3.7.1 SubscriptionCancel

Description

SubscriptionCancel is the container of information that represents the SubscriptionCancel
request.

The server will cancel a subscription (ServerSubHandle) and allow the server to clean up any resources
associated with the subscription. The server will cancel any processing in progress associated with the
specified subscription. The ServerSubHandle will also be invalid for any further
SubscriptionPolledRefresh requests. If the subscription was part of a SubscriptionPolledRefresh which
specified multiple subscriptions, then only the specified subscription will be cancelled and any others
still active will continue to be processed. If the subscription associated with ServerSubHandle was the
last subscription still active, then the SubscriptionPolledRefresh will return immediately. In all cases,
the server will identify the invalid (canceled) ServerSubHandles.
<s:element name="SubscriptionCancel">
 <s:complexType>
 <s:attribute name="ServerSubHandle" type="s:string" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 </s:complexType>
</s:element>

Name Description

ServerSubHandle An identifier which had been supplied by the Server in the response
to the Subscribe request.

ClientRequestHandle An optional attribute supplied by the client that will be returned
with the response. In larger and more complex systems it helps the
client to associate the replies with the proper requests.

Comments:

Example:
<soap:Body>
 <SubscriptionCancel
 ServerSubHandle="67409acb-f926-4106-9d8c-69bb85859ebb"
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/"
 />
</soap:Body>

72

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.7.2 SubscriptionCancelResponse

Description

SubscriptionCancelResponse is the container of information that represents the
SubscriptionCancel response.
<s:element name="SubscriptionCancelResponse">
 <s:complexType>
 <s:attribute name="ClientRequestHandle" type="s:string" />
 </s:complexType>
</s:element>

Name Description

ClientRequestHandle If supplied by the client in the request then this value is echoed back
in the response.

Comments:

Faults:

The Server should use the following fault codes. Additional faults may occur due to protocol or
parsing errors.

E_FAIL See description in Section 3.1.9.

E_NOSUBSCRIPTION See description in Section 3.1.9.

E_OUTOFMEMORY See description in Section 3.1.9.

E_SERVERSTATE See description in Section 3.1.9.

Example:
<soap:Body>
 <SubscriptionCancelResponse
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/"
 />
</soap:Body>

73

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.8 Browse

3.8.1 Browse

Description

Browse is the container of information that represents the Browse request

<s:element name="Browse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="PropertyNames"
 type="s:QName" />
 </s:sequence>
 <s:attribute name="LocaleID tring" /> " type="s:s
 <s:attribute name="ClientRequestHandle" type="s:string" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ContinuationPoint ng" /> " type="s:stri
 <s:attribute default="0" name="MaxElementsReturned" type="s:int" />
 <s:attribute default="all" name="BrowseFilter" type="s0:browseFilter" />
 <s:attribute name="ElementNameFilter" type="s:string" />
 <s:attribute name="VendorFilter" type="s:string" />
 <s:attribute default="false" name="ReturnAllProperties" type="s:boolean"
/>
 <s:attribute default="false" name="ReturnPropertyValues"
type="s:boolean" />
 <s:attribute default="false" name="ReturnErrorText" type="s:boolean" />
 </s:complexType>
</s:element>

<s:simpleType name="browseFilter">
 <s:restriction base="s:string">
 <s:enumeration value="all" />
 <s:enumeration value="branch" />
 <s:enumeration value="item" />
 </s:restriction>
</s:simpleType>

Name Description

PropertyName A sequence of qualified property names to be returned with each
element. If ReturnAllProperties is true, PropertyName is ignored
and all properties are returned.

LocaleID An optional value supplied by the client that specifies the
language for certain return data (see section LocaleID, above).

ClientRequestHandle An optional value supplied by the client that will be returned with
the response. In larger and more complex systems it helps the
client to associate the replies with the proper requests.

ItemPath The ItemPath for the starting item.

If this is a secondary Browse request, this must be identical to the
value supplied in the initial request.

74

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

ItemName The ItemName for the starting item.

If this is a secondary Browse request, this must be identical to the
value supplied in the initial request.

ContinuationPoint If this is a secondary Browse request, the BrowseResponse might
have returned a Continuation Point where the server can restart the
browse operation.

This will not be provided in the initial Browse request.

This is an Opaque value that the server creates.

A Continuation Point will be returned in the response if a Server
does support Continuation Point, and the response is larger than
MaxItemsReturned. The Continuation Point will allow the Client
to resume the Browse request from the previous completion point.

When using continuation point, clients must pass the same mask
and filter for all subsequent Browse calls. Failing to do so will
return error E_INVALIDCONTINUATIONPOINT.

MaxElementsReturned Server must not return any more elements than this value.

If the server supports Continuation Points, then the Server may
return a Continuation Point at a value less than
MaxElementsReturned.

The server will set MoreElements to True if there are more
elements than MaxItemsReturned.

If MaxElementsReturned is missing or 0 then there is no client
side restriction on the number of returned elements.

BrowseFilter An enumeration {all, branch, item} specifying which subset of
browse elements to return. See the table in the comments section
below to determine which combination of bits in BrowseElement
are returned for each value of BrowseFilter.

ElementNameFilter An expression that is identical to the format as defined in DA 2.0,
and DA 3.0 will be used to filter Element names, i.e., the user
readable Name field.

VendorFilter A Vendor specific expression that will be used to filter Vendor
specific information.

Impact to results of the ElementNameFilter is undefined.

ReturnAllProperties Server must return all properties which are available for each of
the returned elements. If ReturnAllProperties is True,
PropertyName is ignored. If ReturnAllProperties is False, or
missing, PropertyName will be used.

ReturnPropertyValues Server must return the property values in addition to the property
names.

ReturnErrorText If TRUE the server will return verbose error description.

Comments:

75

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

If no filters are specified, then an ALL is assumed.

The Browse service only supports a single level of browsing. If the user wishes to recursively browse
a hierachy, then the user will use the returned ItemPaths of elements with children for that purpose.

If the client specifies a null string for ItemPath and ItemName, then the server will do a Browse
beginning at the top level.

The server will do a Browse from the level specified by the combination of ItemPath and ItemName.

The following table describes the relationship between the possible values of HasChildren and IsItem
supplied in the response.

BrowseElement in
Response BrowseFilter in Request

IsItem HasChildren
Description

All Branch Item

false false An empty branch ● ●

false true A branch that has children, or possibly has
children. ● ●

true false An item that is not a branch ● ●

true true A branch that has children, or possibly has
children, that is also an item ● ● ●

Example:
<soap:Body>
 <Browse
 ClientRequestHandle=""
 ItemName="Enumerated Types"
 ReturnAllProperties="true"
 ReturnPropertyValues="true"
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/"
 >
 <PropertyNames>accessRights</PropertyNames>
 <PropertyNames>euType</PropertyNames>
 <PropertyNames>euInfo</PropertyNames>
 </Browse>
</soap:Body>

76

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.8.2 BrowseResponse

Description

BrowseResponse is the container of information that represents the Browse response.

<s:element name="BrowseResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
 name="BrowseResult"
 type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="Elements"
 type="s0:BrowseElement" />
 <s:eleme Occurs="0" maxOccurs="unbounded" nt min
 name="Errors"
 type="s0:OPCError" />
 </s:sequence>
 <s:attribute name="ContinuationPoint" type="s:string" />
 <s:attribute default="false" name="MoreElements" type="s:boolean" />
 </s:complexType>
</s:element>

<s:complexType name="BrowseElement">
 <s:sequence>
 <s:eleme rs="0" maxOccurs="unbounded" nt minOccu
 name="Properties"
 type="s0:ItemProperty" />
 </s:sequence>
 <s:attribute name="Name" type="s:string" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="IsItem" type="s:boolean" use="required" />
 <s:attribute name="HasChildren" type="s:boolean" use="required" />
</s:complexType>

Name Description

BrowseResult For a detailed description of ReplyBase see the separate section, above.

Required Element.

ContinuationPoint If this is a secondary Browse request, the BrowseResponse might have
returned a Continuation Point where the Browse request the server can
restart the browse operation.

This is an Opaque value that the server creates.

The Server may support a Continuation Point. A Continuation Point is
desirable for requests that are larger than MaxItemsReturned.

When using continuation point, clients must pass the same mask and
filter for all subsequent Browse calls. Failing to do so will return error
E_INVALIDCONTINUATIONPOINT.

MoreElements The server will set MoreElements to True if there are more elements
than MaxItemsReturned.

77

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

This attribute is always returned.

Errors An embedded Error structure associated with the Properties of the
elements.

Elements An arbitrary number of elements which match the request.

BrowseElement:

Name Short user friendly portion of the namespace pointing to the element. This
is the string to be used for display purposes in a tree control.

ItemPath ItemPath and ItemName together uniquely identify this element in the
server’s browse space. They are used together in subsequent calls to
Browse, Read, Write, Subscribe, and GetProperties. If ItemPath is empty,
then ItemName by itself is a fully qualified name that uniquely identifies
this element.

In general, the client should use ItemPath and ItemName as-is for
subsequent calls to services.

ItemName See ItemPath

IsItem If IsItem is set then the element is an item that can be used to Read, Write,
and Subscribe.

If ItemPath and ItemName are missing and IsItem is True then this
element is a “hint” versus being a valid item.

Refer to the OPC DA Custom Specification for detail on items, or hints.

HasChildren If HasChidren is set, then this indicates that the returned element has
children and can be used for a subsequent browse.

If it is too time consuming for a server to determine if an element has
children, then this value should be set TRUE so that the the client is given
the opportunity to attempt to browse for potential children.

Properties An array of ItemProperty elements as requested.

Comments:

HasChildren and IsItem are useful for a UI presentation of the hierarchy using a tree control without
doing “browse ahead”. The following truth table indicates the desired UI representation:

HasChildren IsItem UI Representation

false false An empty folder icon with no expand (+) symbol

false true An icon indicating an item

true false A folder icon with the expand (+) symbol

true true A folder/item icon with the expand (+) symbol

78

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

If the level specified by the combination of ItemPath and ItemName is valid, but does not have any
children, then the Browse will succeed, but the result will be an empty result.

If the filter criteria result in an empty result, then the Browse will still succeed.

Abnormal Result Codes:

One of the following codes can be part of any of the property elements.

E_INVALIDPID See description in Section 3.1.9.

E_WRITEONLY See description in Section 3.1.9.

E_XXX, S_XXX Vendor-specific result code.

Faults:

The server should use the following fault codes. Additional faults may occur due to protocol or parsing
errors.

E_FAIL See description in Section 3.1.9.

E_INVALIDCONTINUATIONPOINT See description in Section 3.1.9.

E_INVALIDFILTER See description in Section 3.1.9.

E_INVALIDITEMNAME See description in Section 3.1.9.

E_INVALIDITEMPATH See description in Section 3.1.9.

E_OUTOFMEMORY See description in Section 3.1.9.

E_SERVERSTATE See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9.

E_UNKNOWNITEMNAME See description in Section 3.1.9.

E_UNKNOWNITEMPATH See description in Section 3.1.9.

Example:
<soap:Body>
 <BrowseResponse xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <BrowseResult
 RcvTime="2003-05-27T07:19:27.4625000-07:00"
 ReplyTime="2003-05-27T07:19:27.5625000-07:00"
 ClientRequestHandle=""
 ServerState="running"
 />
 <Elements
 Name="Fellowship"
 ItemName="Enumerated Types/Fellowship"
 IsItem="true"
 HasChildren="false"
 >
 <Properties Name="accessRights" Description="Item Access Rights">
 <Value xsi:type="xsd:string">readWritable</Value>
 </Properties>
 </Elements>
 <Elements
 Name="Gems"

79

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

 ItemName="Enumerated Types/Gems"
 IsItem="true"
 HasChildren="false"
 >
 <Properties Name="accessRights" Description="Item Access Rights">
 <Value xsi:type="xsd:string">readWritable</Value>
 </Properties>
 </Elements>
 </BrowseResponse>
</soap:Body>

80

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.9 GetProperties

3.9.1 GetProperties

Description

GetProperties is the container of information that represents the GetProperties request.

<s:element name="GetProperties">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="ItemIDs"
 type="s0:ItemIdentifier" />
 <s:eleme "0" maxOccurs="unbounded" nt minOccurs=
 name="PropertyNames"
 type="s:QName" />
 </s:sequence>
 <s:attribute name="LocaleID" type="s:string" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute default="false" name="ReturnAllProperties" type="s:boolean"
/>
 <s:attribute default="false" name="ReturnPropertyValues"
type="s:boolean" />
 <s:attribute default="false" name="ReturnErrorText" type="s:boolean" />
 </s:complexType>
</s:element>

<s:complexType name="ItemIdentifier">
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
</s:complexType>

Name Description

ItemIDs A list of Items for which to get properties.

ItemPath and ItemName together uniquely identify this element in the
server’s browse space.

If ItemPath is empty, then ItemName by itself is a fully qualified name
that uniquely identifies this element.

PropertyNames A sequence of qualified property names to be returned. If
ReturnAllProperties is true, PropertyName is ignored and all properties
are returned.

LocaleID An optional value supplied by the client that specifies the language for
certain return data (see section LocaleID, above).

ClientRequestHandle An optional value supplied by the client that will be returned with the
response. In larger and more complex systems it helps the client to
associate the replies with the proper requests.

ItemPath ItemPath is a hierarchical parameter. It can be overridden by the
ItemPath in the ItemIdentifier.

81

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

If ItemPath is Blank or missing at all levels of the hierarchy, then
the ItemName is expected to be a fully qualified name.

ReturnAllProperties Server must return all properties which are available. If
ReturnAllProperties is true, PropertyName is ignored.

ReturnPropertyValues Server must return the property values in addition to the property
names.

ReturnErrorText If TRUE the server will return verbose error description.

Comments:

Example:

<soap:Body>
 <GetProperties
 ReturnPropertyValues="true"
 xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/"
 >
 <ItemIDs ItemName="Enumerated Types/Fellowship" />
 <PropertyNames>accessRights</PropertyNames>
 <PropertyNames>euType</PropertyNames>
 </GetProperties>
</soap:Body>

82

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

3.9.2 GetPropertiesResponse

Description

GetPropertiesResponse is the container of information that represents the GetProperties
response.
<s:element name="GetPropertiesResponse">
 <s:complexType>
 <s:sequence>
 <s:eleme xOccurs="1" nt minOccurs="0" ma
 name="GetPropertiesResult"
 type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="PropertyLists"
 type="s0:PropertyReplyList" />
 <s:element minOccurs="0" maxOccurs="unbounded"
 name="Errors"
 type="s0:OPCError" />
 </s:sequence>
 </s:complexType>
</s:element>

<s:complexType name="PropertyReplyList">
 <s:sequence>
 <s:eleme rs="0" maxOccurs="unbounded" nt minOccu
 name="Properties"
 type="s0:ItemProperty" />
 </s:sequence>
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ResultID" type="s:QName" />
</s:complexType>

Name Description

GetPropertiesResult For a detailed description of ReplyBase see the separate section,
above.

Required Element.

PropertyList One of these elements is returned for each requested item. ItemName
and ItemPath are returned for convenience. If unknown or invalid an
error is returned in ResultID. Otherwise, Property contains the list
of requested properties.

For a detailed description of ItemProperty see the separate section
above.

Errors An array of Errors that is appropriate for this Response.

Abnormal Result Codes:

One of the following codes can be part of any of the property elements.

E_FAIL See description in Section 3.1.9.

83

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

E_INVALIDITEMNAME See description in Section 3.1.9.

E_INVALIDITEMPATH See description in Section 3.1.9.

E_INVALIDPID See description in Section 3.1.9.

E_UNKNOWNITEMPATH See description in Section 3.1.9.

E_UNKNOWNITEMNAME See description in Section 3.1.9.

E_WRITEONLY See description in Section 3.1.9.

E_XXX, S_XXX Vendor-specific result code.

Faults:

The sServer should use the following fault codes. Additional faults may occur due to protocol or
parsing errors.

E_FAIL See description in Section 3.1.9.

E_OUTOFMEMORY See description in Section 3.1.9.

E_SERVERSTATE See description in Section 3.1.9.

E_TIMEDOUT See description in Section 3.1.9.

Example:
<soap:Body>
 <GetPropertiesResponse
xmlns="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <GetPropertiesResult
 RcvTime="2003-05-27T07:29:33.1875000-07:00"
 ReplyTime="2003-05-27T07:39:33.1875000-07:00"
 ServerState="running"
 />
 <PropertyLists>
 <Properties Name="accessRights" Description="Item Access Rights">
 <Value xsi:type="xsd:string">readWritable</Value>
 </Properties>
 <Properties Name="euType" Description="Item EU Type">
 <Value xsi:type="xsd:string">enumerated</Value>
 </Properties>
 </PropertyLists>
 </GetPropertiesResponse>
</soap:Body>

84

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

4. Transports
The OPC-XML-DA specification defines a set of services by defining the request and response
messages with the syntax defined by the SOAP specification. For purposes of compliance testing and
multi-vendor interoperability, this specification requires that clients and servers use HTTP as a means
to transport these messages.

That said, vendors might choose to implement systems that use the OPC-XML-DA message formats
but use transport protocols other than HTTP (such as SMTP).

85

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

5. Appendix A - Patent Issues
As of the time of publication, the OPC Foundation has been made aware of four

patents that may be relevant to implementers using XML DA components. All four

patents were the subject of a suit between Schneider Automation and Opto 22, Inc.

alleging patent infringement.

1. U.S. Patent 5,805,442 (Crater et al.) (the '442 Patent) and

 U.S. Patent 5,975,737 (Crater et al.) (the '737 Patent)

Based on a review of the claims of the '442 and '737 Patents, OPC believes that a

system would not necessarily infringe any of the claims of either the '442 Patent or the

'737 Patent, if the system lacks a controller or control system having instructions

associated with data gathered by the controller or control system, where the instructions

are retrievable and executable by a computer and cause the computer to present the data

in a predetermined format. The XML DA specification does not include this function as

a requirement or as an option. Accordingly, our view is that the proposed XML DA

protocol can be implemented without necessarily infringing the '442 Patent or the '737

Patent.

2. U.S. Patent 6,061,603 (Papadopolous et al.) (The '603 Patent) and

 U.S. Patent 6,282,454 (Papadopolous et al.) (The '454 Patent)

These patents may be relevant to those implementing an interface module that

connects to the backplane of a programmable logic controller (PLC) for coupling the

PLC to a network to allow access to the PLC using a web browser, particularly for

interface module implementations including a microprocessor with a real-time operating

system. Systems that do not include an interface module for coupling the backplane of a

PLC to a network would not necessarily infringe any of the claims of either the '603

Patent or the '454 Patent. The XML DA specification does not include this function as a

requirement or as an option. Accordingly, our view is that the proposed XML DA

protocol can be used without necessarily infringing the '603 Patent or the '454 Patent.

87

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

®

Released

Parties considering use of XML DA must be aware that some specific

implementations, or features added to otherwise non-infringing implementations, may

raise an issue of infringement with respect to these patents or to some other patent. In

particular, incorporation of XML DA components into an otherwise infringing system

cannot be relied on to cure the otherwise infringing system.

This statement should not be relied upon by any party as an opinion or guarantee

that any implementation it might make or use would not infringe the '442, '737, '603, or

'454 Patents or any other patents. Moreover, Schneider might disagree with the above

interpretations of the claims of these patents.

The OPC Foundation does not indemnify the members or non-members using

specifications or sample code provided by the OPC Foundation.

The OPC Foundation does not guarantee that using the OPC Foundation

components prevents users from infringing on any patented technology whatsoever. The

vendors and end-users are encouraged to validate that the products and systems that are

constructed do not infringe on patented technology. OPC Foundation specifically

disclaims any liability for any infringement by members or non-members.

88

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

6. Appendix B - Formal Schemas (WSDL)
This section contains the complete WSDL for the OPC-XML-DA WebService.

NOTE:

The WSDL shown in the document is a snapshot of the latest available WSDL.

Implementers must use the published WSDL when building web applications that comply with this specification.

The published WSDL is available at this URL: http://opcfoundation.org/webservices/XMLDA/1.0/

For many of the requests and responses in the WSDL that follows, “minOccurs=0” is used. However, the actual minumum number required by the request
or response is specified above for each request and response.

<?xml version="1.0" encoding="utf-8"?>
<!--
 COPYRIGHT (c) 2003 OPC Foundation. All rights reserved.
 http://www.opcfoundation.org
 Use subject to the OPC Foundation License Agreement found at the following URL:
 http://www.opcfoundation.org/Downloads/LicenseAgreement.asp
-->
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://opcfoundation.org/webservices/XMLDA/1.0/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://opcfoundation.org/webservices/XMLDA/1.0/" xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema elementFormDefault="qualified"
targetNamespace="http://opcfoundation.org/webservices/XMLDA/1.0/">
 <s:element name="GetStatus">
 <s:complexType>
 <s:attribute name="LocaleID" type="s:string" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 </s:complexType>
 </s:element>

89

http://opcfoundation.org/webservices/XMLDA/1.0/

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:element name="GetStatusResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetStatusResult" type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="1" name="Status" type="s0:ServerStatus" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="ReplyBase">
 <s:attribute name="RcvTime" type="s:dateTime" use="required" />
 <s:attribute name="ReplyTime" type="s:dateTime" use="required" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 <s:attribute name="RevisedLocaleID" type="s:string" />
 <s:attribute name="ServerState" type="s0:serverState" use="required" />
 </s:complexType>
 <s:simpleType name="serverState">
 <s:restriction base="s:string">
 <s:enumeration value="running" />
 <s:enumeration value="failed" />
 <s:enumeration value="noConfig" />
 <s:enumeration value="suspended" />
 <s:enumeration value="test" />
 <s:enumeration value="commFault" />
 </s:restriction>
 </s:simpleType>
 <s:complexType name="ServerStatus">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="StatusInfo" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="VendorInfo" type="s:string" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="SupportedLocaleIDs" type="s:string" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="SupportedInterfaceVersions"
type="s0:interfaceVersion" />
 </s:sequence>
 <s:attribute name="StartTime" type="s:dateTime" use="required" />
 <s:attribute name="ProductVersion" type="s:string" />
 </s:complexType>
 <s:simpleType name="interfaceVersion">
 <s:restriction base="s:string">

90

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:enumeration value="XML_DA_Version_1_0" />
 </s:restriction>
 </s:simpleType>
 <s:element name="Read">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Options" type="s0:RequestOptions" />
 <s:element minOccurs="0" maxOccurs="1" name="ItemList" type="s0:ReadRequestItemList" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="RequestOptions">
 <s:attribute default="true" name="ReturnErrorText" type="s:boolean" />
 <s:attribute default="false" name="ReturnDiagnosticInfo" type="s:boolean" />
 <s:attribute default="false" name="ReturnItemTime" type="s:boolean" />
 <s:attribute default="false" name="ReturnItemPath" type="s:boolean" />
 <s:attribute default="false" name="ReturnItemName" type="s:boolean" />
 <s:attribute name="RequestDeadline" type="s:dateTime" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 <s:attribute name="LocaleID" type="s:string" />
 </s:complexType>
 <s:complexType name="ReadRequestItemList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Items" type="s0:ReadRequestItem" />
 </s:sequence>
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType" type="s:QName" />
 <s:attribute name="MaxAge" type="s:int" />
 </s:complexType>
 <s:complexType name="ReadRequestItem">
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType" type="s:QName" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ClientItemHandle" type="s:string" />
 <s:attribute name="MaxAge" type="s:int" />
 </s:complexType>
 <s:element name="ReadResponse">
 <s:complexType>

91

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="ReadResult" type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="1" name="RItemList" type="s0:ReplyItemList" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="Errors" type="s0:OPCError" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="ReplyItemList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Items" type="s0:ItemValue" />
 </s:sequence>
 <s:attribute name="Reserved" type="s:string" />
 </s:complexType>
 <s:complexType name="ItemValue">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="DiagnosticInfo" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="Value" />
 <s:element minOccurs="0" maxOccurs="1" name="Quality" type="s0:OPCQuality" />
 </s:sequence>
 <s:attribute name="ValueTypeQualifier" type="s:QName" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ClientItemHandle" type="s:string" />
 <s:attribute name="Timestamp" type="s:dateTime" />
 <s:attribute name="ResultID" type="s:QName" />
 </s:complexType>
 <s:complexType name="OPCQuality">
 <s:attribute default="good" name="QualityField" type="s0:qualityBits" />
 <s:attribute default="none" name="LimitField" type="s0:limitBits" />
 <s:attribute default="0" name="VendorField" type="s:unsignedByte" />
 </s:complexType>
 <s:simpleType name="qualityBits">
 <s:restriction base="s:string">
 <s:enumeration value="bad" />
 <s:enumeration value="badConfigurationError" />
 <s:enumeration value="badNotConnected" />
 <s:enumeration value="badDeviceFailure" />
 <s:enumeration value="badSensorFailure" />

92

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:enumeration value="badLastKnownValue" />
 <s:enumeration value="badCommFailure" />
 <s:enumeration value="badOutOfService" />
 <s:enumeration value="badWaitingForInitialData" />
 <s:enumeration value="uncertain" />
 <s:enumeration value="uncertainLastUsableValue" />
 <s:enumeration value="uncertainSensorNotAccurate" />
 <s:enumeration value="uncertainEUExceeded" />
 <s:enumeration value="uncertainSubNormal" />
 <s:enumeration value="good" />
 <s:enumeration value="goodLocalOverride" />
 </s:restriction>
 </s:simpleType>
 <s:simpleType name="limitBits">
 <s:restriction base="s:string">
 <s:enumeration value="none" />
 <s:enumeration value="low" />
 <s:enumeration value="high" />
 <s:enumeration value="constant" />
 </s:restriction>
 </s:simpleType>
 <s:complexType name="OPCError">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Text" type="s:string" />
 </s:sequence>
 <s:attribute name="ID" type="s:QName" use="required" />
 </s:complexType>
 <s:complexType name="ArrayOfFloat">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="float" type="s:float" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfInt">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="int" type="s:int" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfUnsignedInt">

93

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="unsignedInt" type="s:unsignedInt" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfLong">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="long" type="s:long" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfUnsignedLong">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="unsignedLong" type="s:unsignedLong" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfDouble">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="double" type="s:double" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfUnsignedShort">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="unsignedShort" type="s:unsignedShort" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfBoolean">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="boolean" type="s:boolean" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfString">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="string" nillable="true" type="s:string" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfDateTime">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="dateTime" type="s:dateTime" />
 </s:sequence>

94

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 </s:complexType>
 <s:complexType name="ArrayOfAnyType">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="anyType" nillable="true" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfDecimal">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="decimal" type="s:decimal" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfByte">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="byte" type="s:byte" />
 </s:sequence>
 </s:complexType>
 <s:complexType name="ArrayOfShort">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="short" type="s:short" />
 </s:sequence>
 </s:complexType>
 <s:element name="Write">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Options" type="s0:RequestOptions" />
 <s:element minOccurs="0" maxOccurs="1" name="ItemList" type="s0:WriteRequestItemList" />
 </s:sequence>
 <s:attribute name="ReturnValuesOnReply" type="s:boolean" use="required" />
 </s:complexType>
 </s:element>
 <s:complexType name="WriteRequestItemList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Items" type="s0:ItemValue" />
 </s:sequence>
 <s:attribute name="ItemPath" type="s:string" />
 </s:complexType>
 <s:element name="WriteResponse">
 <s:complexType>

95

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="WriteResult" type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="1" name="RItemList" type="s0:ReplyItemList" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="Errors" type="s0:OPCError" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="Subscribe">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Options" type="s0:RequestOptions" />
 <s:element minOccurs="0" maxOccurs="1" name="ItemList" type="s0:SubscribeRequestItemList" />
 </s:sequence>
 <s:attribute name="ReturnValuesOnReply" type="s:boolean" use="required" />
 <s:attribute default="0" name="SubscriptionPingRate" type="s:int" />
 </s:complexType>
 </s:element>
 <s:complexType name="SubscribeRequestItemList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Items" type="s0:SubscribeRequestItem" />
 </s:sequence>
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType" type="s:QName" />
 <s:attribute name="Deadband" type="s:float" />
 <s:attribute name="RequestedSamplingRate" type="s:int" />
 <s:attribute name="EnableBuffering" type="s:boolean" />
 </s:complexType>
 <s:complexType name="SubscribeRequestItem">
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ReqType" type="s:QName" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ClientItemHandle" type="s:string" />
 <s:attribute name="Deadband" type="s:float" />
 <s:attribute name="RequestedSamplingRate" type="s:int" />
 <s:attribute name="EnableBuffering" type="s:boolean" />
 </s:complexType>
 <s:complexType name="SubscribeReplyItemList">
 <s:sequence>

96

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:element minOccurs="0" maxOccurs="unbounded" name="Items" type="s0:SubscribeItemValue" />
 </s:sequence>
 <s:attribute name="RevisedSamplingRate" type="s:int" />
 </s:complexType>
 <s:complexType name="SubscribeItemValue">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="ItemValue" type="s0:ItemValue" />
 </s:sequence>
 <s:attribute name="RevisedSamplingRate" type="s:int" />
 </s:complexType>
 <s:element name="SubscribeResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="SubscribeResult" type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="1" name="RItemList" type="s0:SubscribeReplyItemList" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="Errors" type="s0:OPCError" />
 </s:sequence>
 <s:attribute name="ServerSubHandle" type="s:string" />
 </s:complexType>
 </s:element>
 <s:element name="SubscriptionPolledRefresh">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Options" type="s0:RequestOptions" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="ServerSubHandles" type="s:string" />
 </s:sequence>
 <s:attribute name="HoldTime" type="s:dateTime" />
 <s:attribute default="0" name="WaitTime" type="s:int" />
 <s:attribute default="false" name="ReturnAllItems" type="s:boolean" />
 </s:complexType>
 </s:element>
 <s:complexType name="SubscribePolledRefreshReplyItemList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Items" type="s0:ItemValue" />
 </s:sequence>
 <s:attribute name="SubscriptionHandle" type="s:string" />
 </s:complexType>
 <s:element name="SubscriptionPolledRefreshResponse">

97

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="SubscriptionPolledRefreshResult"
type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="InvalidServerSubHandles" type="s:string"
/>
 <s:element minOccurs="0" maxOccurs="unbounded" name="RItemList"
type="s0:SubscribePolledRefreshReplyItemList" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="Errors" type="s0:OPCError" />
 </s:sequence>
 <s:attribute default="false" name="DataBufferOverflow" type="s:boolean" />
 </s:complexType>
 </s:element>
 <s:element name="SubscriptionCancel">
 <s:complexType>
 <s:attribute name="ServerSubHandle" type="s:string" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 </s:complexType>
 </s:element>
 <s:element name="SubscriptionCancelResponse">
 <s:complexType>
 <s:attribute name="ClientRequestHandle" type="s:string" />
 </s:complexType>
 </s:element>
 <s:element name="Browse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="PropertyNames" type="s:QName" />
 </s:sequence>
 <s:attribute name="LocaleID" type="s:string" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ContinuationPoint" type="s:string" />
 <s:attribute default="0" name="MaxElementsReturned" type="s:int" />
 <s:attribute default="all" name="BrowseFilter" type="s0:browseFilter" />
 <s:attribute name="ElementNameFilter" type="s:string" />
 <s:attribute name="VendorFilter" type="s:string" />

98

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <s:attribute default="false" name="ReturnAllProperties" type="s:boolean" />
 <s:attribute default="false" name="ReturnPropertyValues" type="s:boolean" />
 <s:attribute default="false" name="ReturnErrorText" type="s:boolean" />
 </s:complexType>
 </s:element>
 <s:simpleType name="browseFilter">
 <s:restriction base="s:string">
 <s:enumeration value="all" />
 <s:enumeration value="branch" />
 <s:enumeration value="item" />
 </s:restriction>
 </s:simpleType>
 <s:complexType name="BrowseElement">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Properties" type="s0:ItemProperty" />
 </s:sequence>
 <s:attribute name="Name" type="s:string" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="IsItem" type="s:boolean" use="required" />
 <s:attribute name="HasChildren" type="s:boolean" use="required" />
 </s:complexType>
 <s:complexType name="ItemProperty">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="Value" />
 </s:sequence>
 <s:attribute name="Name" type="s:QName" use="required" />
 <s:attribute name="Description" type="s:string" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ResultID" type="s:QName" />
 </s:complexType>
 <s:element name="BrowseResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="BrowseResult" type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="Elements" type="s0:BrowseElement" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="Errors" type="s0:OPCError" />

99

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 </s:sequence>
 <s:attribute name="ContinuationPoint" type="s:string" />
 <s:attribute default="false" name="MoreElements" type="s:boolean" />
 </s:complexType>
 </s:element>
 <s:element name="GetProperties">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="ItemIDs" type="s0:ItemIdentifier" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="PropertyNames" type="s:QName" />
 </s:sequence>
 <s:attribute name="LocaleID" type="s:string" />
 <s:attribute name="ClientRequestHandle" type="s:string" />
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute default="false" name="ReturnAllProperties" type="s:boolean" />
 <s:attribute default="false" name="ReturnPropertyValues" type="s:boolean" />
 <s:attribute default="false" name="ReturnErrorText" type="s:boolean" />
 </s:complexType>
 </s:element>
 <s:complexType name="ItemIdentifier">
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 </s:complexType>
 <s:complexType name="PropertyReplyList">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Properties" type="s0:ItemProperty" />
 </s:sequence>
 <s:attribute name="ItemPath" type="s:string" />
 <s:attribute name="ItemName" type="s:string" />
 <s:attribute name="ResultID" type="s:QName" />
 </s:complexType>
 <s:element name="GetPropertiesResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetPropertiesResult" type="s0:ReplyBase" />
 <s:element minOccurs="0" maxOccurs="unbounded" name="PropertyLists" type="s0:PropertyReplyList"
/>
 <s:element minOccurs="0" maxOccurs="unbounded" name="Errors" type="s0:OPCError" />

100

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </types>
 <message name="GetStatusSoapIn">
 <part name="parameters" element="s0:GetStatus" />
 </message>
 <message name="GetStatusSoapOut">
 <part name="parameters" element="s0:GetStatusResponse" />
 </message>
 <message name="ReadSoapIn">
 <part name="parameters" element="s0:Read" />
 </message>
 <message name="ReadSoapOut">
 <part name="parameters" element="s0:ReadResponse" />
 </message>
 <message name="WriteSoapIn">
 <part name="parameters" element="s0:Write" />
 </message>
 <message name="WriteSoapOut">
 <part name="parameters" element="s0:WriteResponse" />
 </message>
 <message name="SubscribeSoapIn">
 <part name="parameters" element="s0:Subscribe" />
 </message>
 <message name="SubscribeSoapOut">
 <part name="parameters" element="s0:SubscribeResponse" />
 </message>
 <message name="SubscriptionPolledRefreshSoapIn">
 <part name="parameters" element="s0:SubscriptionPolledRefresh" />
 </message>
 <message name="SubscriptionPolledRefreshSoapOut">
 <part name="parameters" element="s0:SubscriptionPolledRefreshResponse" />
 </message>
 <message name="SubscriptionCancelSoapIn">
 <part name="parameters" element="s0:SubscriptionCancel" />
 </message>

101

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <message name="SubscriptionCancelSoapOut">
 <part name="parameters" element="s0:SubscriptionCancelResponse" />
 </message>
 <message name="BrowseSoapIn">
 <part name="parameters" element="s0:Browse" />
 </message>
 <message name="BrowseSoapOut">
 <part name="parameters" element="s0:BrowseResponse" />
 </message>
 <message name="GetPropertiesSoapIn">
 <part name="parameters" element="s0:GetProperties" />
 </message>
 <message name="GetPropertiesSoapOut">
 <part name="parameters" element="s0:GetPropertiesResponse" />
 </message>
 <portType name="Service">
 <operation name="GetStatus">
 <input message="s0:GetStatusSoapIn" />
 <output message="s0:GetStatusSoapOut" />
 </operation>
 <operation name="Read">
 <input message="s0:ReadSoapIn" />
 <output message="s0:ReadSoapOut" />
 </operation>
 <operation name="Write">
 <input message="s0:WriteSoapIn" />
 <output message="s0:WriteSoapOut" />
 </operation>
 <operation name="Subscribe">
 <input message="s0:SubscribeSoapIn" />
 <output message="s0:SubscribeSoapOut" />
 </operation>
 <operation name="SubscriptionPolledRefresh">
 <input message="s0:SubscriptionPolledRefreshSoapIn" />
 <output message="s0:SubscriptionPolledRefreshSoapOut" />
 </operation>
 <operation name="SubscriptionCancel">
 <input message="s0:SubscriptionCancelSoapIn" />

102

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <output message="s0:SubscriptionCancelSoapOut" />
 </operation>
 <operation name="Browse">
 <input message="s0:BrowseSoapIn" />
 <output message="s0:BrowseSoapOut" />
 </operation>
 <operation name="GetProperties">
 <input message="s0:GetPropertiesSoapIn" />
 <output message="s0:GetPropertiesSoapOut" />
 </operation>
 </portType>
 <binding name="Service" type="s0:Service">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="GetStatus">
 <soap:operation soapAction="http://opcfoundation.org/webservices/XMLDA/1.0/GetStatus"
style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="Read">
 <soap:operation soapAction="http://opcfoundation.org/webservices/XMLDA/1.0/Read" style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="Write">
 <soap:operation soapAction="http://opcfoundation.org/webservices/XMLDA/1.0/Write" style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>

103

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="Subscribe">
 <soap:operation soapAction="http://opcfoundation.org/webservices/XMLDA/1.0/Subscribe"
style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="SubscriptionPolledRefresh">
 <soap:operation soapAction="http://opcfoundation.org/webservices/XMLDA/1.0/SubscriptionPolledRefresh"
style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="SubscriptionCancel">
 <soap:operation soapAction="http://opcfoundation.org/webservices/XMLDA/1.0/SubscriptionCancel"
style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="Browse">
 <soap:operation soapAction="http://opcfoundation.org/webservices/XMLDA/1.0/Browse" style="document"
/>
 <input>
 <soap:body use="literal" />

104

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 <operation name="GetProperties">
 <soap:operation soapAction="http://opcfoundation.org/webservices/XMLDA/1.0/GetProperties"
style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
</definitions>

105

OPC XML-DA Specification
(Version 1.01)

F O U N D A T I O N

Released

106

	Introduction
	Background
	Purpose
	Relationship to Other OPC Specifications
	Deliverables
	Prerequisites
	XML-DA Errata

	Fundamental Concepts
	SOAP
	Name Space
	OPC-XML-DA Server Detection
	Locale IDs
	Subscription architecture
	Basic Polled Refresh Approach
	Advanced Polled Refresh Approach
	Data Management Optimization
	Buffered Data
	Timestamps

	Faults and Result Codes
	Data Types for Item Values
	Simple
	Enumeration
	Array
	Data Range and Precision
	Data Types and Localization
	Data Type Conversions

	Security
	Compliance

	OPC XML-DA Schema Reference
	Base Schemas
	Hierarchical Parameters
	Null Parameters
	RequestList
	RequestItem
	ItemValue
	RequestOptions
	ServerState
	ReplyBase
	OPCError
	ItemProperty

	GetStatus
	GetStatus
	GetStatusResponse

	Read
	Read
	ReadResponse

	Write
	Write
	WriteResponse

	Subscribe
	Subscribe
	SubscribeResponse

	SubscriptionPolledRefresh
	SubscriptionPolledRefresh
	SubscriptionPolledRefreshResponse

	SubscriptionCancel
	SubscriptionCancel
	SubscriptionCancelResponse

	Browse
	Browse
	BrowseResponse

	GetProperties
	GetProperties
	GetPropertiesResponse

	Transports
	Appendix A - Patent Issues
	Appendix B - Formal Schemas (WSDL)

